Create app.py
Browse filesTake user keyword
queries the arXiv API for the latest papers
uses TF-IDF + Cosine Similarity to semantically rank those papers by relevance
Displays the top papers in a Gradio Web Interface.
app.py
ADDED
|
@@ -0,0 +1,176 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""------Applied TF-IDF for better semantic search------"""
|
| 2 |
+
import feedparser
|
| 3 |
+
import urllib.parse
|
| 4 |
+
import yaml
|
| 5 |
+
from tools.final_answer import FinalAnswerTool
|
| 6 |
+
import numpy as np
|
| 7 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 8 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 9 |
+
import gradio as gr
|
| 10 |
+
from smolagents import CodeAgent,DuckDuckGoSearchTool, HfApiModel,load_tool,tool
|
| 11 |
+
import nltk
|
| 12 |
+
|
| 13 |
+
import datetime
|
| 14 |
+
import requests
|
| 15 |
+
import pytz
|
| 16 |
+
from tools.final_answer import FinalAnswerTool
|
| 17 |
+
|
| 18 |
+
from Gradio_UI import GradioUI
|
| 19 |
+
|
| 20 |
+
nltk.download("stopwords")
|
| 21 |
+
from nltk.corpus import stopwords
|
| 22 |
+
|
| 23 |
+
@tool # β
Register the function properly as a SmolAgents tool
|
| 24 |
+
def fetch_latest_arxiv_papers(keywords: list, num_results: int = 5) -> list:
|
| 25 |
+
"""Fetches and ranks arXiv papers using TF-IDF and Cosine Similarity.
|
| 26 |
+
Args:
|
| 27 |
+
keywords: List of keywords for search.
|
| 28 |
+
num_results: Number of results to return.
|
| 29 |
+
Returns:
|
| 30 |
+
List of the most relevant papers based on TF-IDF ranking.
|
| 31 |
+
"""
|
| 32 |
+
try:
|
| 33 |
+
print(f"DEBUG: Searching arXiv papers with keywords: {keywords}")
|
| 34 |
+
|
| 35 |
+
# Use a general keyword search
|
| 36 |
+
query = "+AND+".join([f"all:{kw}" for kw in keywords])
|
| 37 |
+
query_encoded = urllib.parse.quote(query)
|
| 38 |
+
url = f"http://export.arxiv.org/api/query?search_query={query_encoded}&start=0&max_results=50&sortBy=submittedDate&sortOrder=descending"
|
| 39 |
+
|
| 40 |
+
print(f"DEBUG: Query URL - {url}")
|
| 41 |
+
|
| 42 |
+
feed = feedparser.parse(url)
|
| 43 |
+
papers = []
|
| 44 |
+
|
| 45 |
+
# Extract papers from arXiv
|
| 46 |
+
for entry in feed.entries:
|
| 47 |
+
papers.append({
|
| 48 |
+
"title": entry.title,
|
| 49 |
+
"authors": ", ".join(author.name for author in entry.authors),
|
| 50 |
+
"year": entry.published[:4],
|
| 51 |
+
"abstract": entry.summary,
|
| 52 |
+
"link": entry.link
|
| 53 |
+
})
|
| 54 |
+
|
| 55 |
+
if not papers:
|
| 56 |
+
return [{"error": "No results found. Try different keywords."}]
|
| 57 |
+
|
| 58 |
+
# Prepare TF-IDF Vectorization
|
| 59 |
+
corpus = [paper["title"] + " " + paper["abstract"] for paper in papers]
|
| 60 |
+
vectorizer = TfidfVectorizer(stop_words=stopwords.words('english')) # Remove stopwords
|
| 61 |
+
tfidf_matrix = vectorizer.fit_transform(corpus)
|
| 62 |
+
|
| 63 |
+
# Transform Query into TF-IDF Vector
|
| 64 |
+
query_str = " ".join(keywords)
|
| 65 |
+
query_vec = vectorizer.transform([query_str])
|
| 66 |
+
|
| 67 |
+
#Compute Cosine Similarity
|
| 68 |
+
similarity_scores = cosine_similarity(query_vec, tfidf_matrix).flatten()
|
| 69 |
+
|
| 70 |
+
#Sort papers based on similarity score
|
| 71 |
+
ranked_papers = sorted(zip(papers, similarity_scores), key=lambda x: x[1], reverse=True)
|
| 72 |
+
|
| 73 |
+
# Return the most relevant papers
|
| 74 |
+
return [paper[0] for paper in ranked_papers[:num_results]]
|
| 75 |
+
|
| 76 |
+
except Exception as e:
|
| 77 |
+
print(f"ERROR: {str(e)}")
|
| 78 |
+
return [{"error": f"Error fetching research papers: {str(e)}"}]
|
| 79 |
+
|
| 80 |
+
@tool
|
| 81 |
+
def get_current_time_in_timezone(timezone: str) -> str:
|
| 82 |
+
"""A tool that fetches the current local time in a specified timezone.
|
| 83 |
+
Args:
|
| 84 |
+
timezone: A string representing a valid timezone (e.g., 'America/New_York').
|
| 85 |
+
"""
|
| 86 |
+
try:
|
| 87 |
+
# Create timezone object
|
| 88 |
+
tz = pytz.timezone(timezone)
|
| 89 |
+
# Get current time in that timezone
|
| 90 |
+
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
|
| 91 |
+
return f"The current local time in {timezone} is: {local_time}"
|
| 92 |
+
except Exception as e:
|
| 93 |
+
return f"Error fetching time for timezone '{timezone}': {str(e)}"
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
final_answer = FinalAnswerTool()
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
# AI Model
|
| 100 |
+
model = HfApiModel(
|
| 101 |
+
max_tokens=2096,
|
| 102 |
+
temperature=0.5,
|
| 103 |
+
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',
|
| 104 |
+
custom_role_conversions=None,
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
# Import tool from Hub
|
| 108 |
+
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
# Load prompt templates
|
| 112 |
+
with open("prompts.yaml", 'r') as stream:
|
| 113 |
+
prompt_templates = yaml.safe_load(stream)
|
| 114 |
+
|
| 115 |
+
# Create the AI Agent
|
| 116 |
+
agent = CodeAgent(
|
| 117 |
+
model=model,
|
| 118 |
+
tools=[final_answer,fetch_latest_arxiv_papers], # Add your tools here
|
| 119 |
+
max_steps=6,
|
| 120 |
+
verbosity_level=1,
|
| 121 |
+
grammar=None,
|
| 122 |
+
planning_interval=None,
|
| 123 |
+
name="ScholarAgent",
|
| 124 |
+
description="An AI agent that fetches the latest research papers from arXiv based on user-defined keywords and filters.",
|
| 125 |
+
prompt_templates=prompt_templates
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
#Search Papers
|
| 131 |
+
def search_papers(user_input):
|
| 132 |
+
keywords = [kw.strip() for kw in user_input.split(",") if kw.strip()] # Ensure valid keywords
|
| 133 |
+
print(f"DEBUG: Received input keywords - {keywords}") # Debug user input
|
| 134 |
+
|
| 135 |
+
if not keywords:
|
| 136 |
+
print("DEBUG: No valid keywords provided.")
|
| 137 |
+
return "Error: Please enter at least one valid keyword."
|
| 138 |
+
|
| 139 |
+
results = fetch_latest_arxiv_papers(keywords, num_results=3) # Fetch 3 results
|
| 140 |
+
print(f"DEBUG: Results received - {results}") # Debug function output
|
| 141 |
+
|
| 142 |
+
# Check if the API returned an error
|
| 143 |
+
if isinstance(results, list) and len(results) > 0 and "error" in results[0]:
|
| 144 |
+
return results[0]["error"] # Return the error message directly
|
| 145 |
+
|
| 146 |
+
# Format results only if valid papers exist
|
| 147 |
+
if isinstance(results, list) and results and isinstance(results[0], dict):
|
| 148 |
+
formatted_results = "\n\n".join([
|
| 149 |
+
f"---\n\n"
|
| 150 |
+
f"π **Title:** {paper['title']}\n\n"
|
| 151 |
+
f"π¨βπ¬ **Authors:** {paper['authors']}\n\n"
|
| 152 |
+
f"π
**Year:** {paper['year']}\n\n"
|
| 153 |
+
f"π **Abstract:** {paper['abstract'][:500]}... *(truncated for readability)*\n\n"
|
| 154 |
+
f"[π Read Full Paper]({paper['link']})\n\n"
|
| 155 |
+
for paper in results
|
| 156 |
+
])
|
| 157 |
+
return formatted_results
|
| 158 |
+
|
| 159 |
+
print("DEBUG: No results found.")
|
| 160 |
+
return "No results found. Try different keywords."
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
# Create Gradio UI
|
| 165 |
+
with gr.Blocks() as demo:
|
| 166 |
+
gr.Markdown("# ScholarAgent")
|
| 167 |
+
keyword_input = gr.Textbox(label="Enter keywords(comma-separated) or even full sentences ", placeholder="e.g., deep learning, reinforcement learning or NLP in finance or Deep learning in Medicine")
|
| 168 |
+
output_display = gr.Markdown()
|
| 169 |
+
search_button = gr.Button("Search")
|
| 170 |
+
|
| 171 |
+
search_button.click(search_papers, inputs=[keyword_input], outputs=[output_display])
|
| 172 |
+
|
| 173 |
+
print("DEBUG: Gradio UI is running. Waiting for user input...")
|
| 174 |
+
|
| 175 |
+
# Launch Gradio App
|
| 176 |
+
demo.launch()
|