Spaces:
Sleeping
Sleeping
| import numpy as np | |
| import pandas as pd | |
| from sklearn.linear_model import ElasticNet | |
| from sklearn.model_selection import GridSearchCV | |
| from sklearn.metrics import mean_absolute_error | |
| from sklearn.impute import KNNImputer | |
| import pickle | |
| def predict(new_data): | |
| # impute missing `Overall Qual` values | |
| url = 'https://huggingface.co/spaces/yxmauw/ames-houseprice-recommender/raw/main/streamlit_imp_data.csv' | |
| imp_data = pd.read_csv(url, header=0) | |
| imp = KNNImputer() | |
| imp.fit(imp_data) | |
| shaped_data = np.reshape(new_data, (1, -1)) | |
| input_data = imp.transform(shaped_data) | |
| # load model | |
| with open('final_model.sav','rb') as f: | |
| model = pickle.load(f) | |
| pred = model.predict([input_data][0]) | |
| return pred | |