Spaces:
Build error
Build error
artelabsuper
commited on
Commit
·
daf1ccd
1
Parent(s):
a2b88d1
copy work from repo
Browse files- .gitattributes +1 -0
- .gitignore +1 -0
- app.py +71 -0
- config.py +132 -0
- examples_audio/2-82367-A-10.wav +0 -0
- examples_audio/4-255371-A-47.wav +0 -0
- examples_audio/urban_sound_98223-7-10-0.wav +0 -0
- model/htsat.py +836 -0
- model/layers.py +195 -0
- requirements.txt +18 -0
- saved_training/HTSAT_ESC_exp=1_fold=1_acc=0.985.ckpt +3 -0
- sed_model.py +357 -0
.gitattributes
CHANGED
|
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
saved_training/HTSAT_ESC_exp=1_fold=1_acc=0.985.ckpt filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
__pycache__
|
app.py
ADDED
|
@@ -0,0 +1,71 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from scipy.io.wavfile import write
|
| 4 |
+
import config
|
| 5 |
+
|
| 6 |
+
import torch
|
| 7 |
+
from model.htsat import HTSAT_Swin_Transformer
|
| 8 |
+
from sed_model import SEDWrapper
|
| 9 |
+
import librosa
|
| 10 |
+
import numpy as np
|
| 11 |
+
|
| 12 |
+
example_path = './examples_audio'
|
| 13 |
+
|
| 14 |
+
class_mapping = ['dog', 'rooster', 'pig', 'cow', 'frog', 'cat', 'hen', 'insects', 'sheep', 'crow', 'rain', 'sea_waves', 'crackling_fire', 'crickets', 'chirping_birds', 'water_drops', 'wind', 'pouring_water', 'toilet_flush', 'thunderstorm', 'crying_baby', 'sneezing', 'clapping', 'breathing', 'coughing', 'footsteps', 'laughing',
|
| 15 |
+
'brushing_teeth', 'snoring', 'drinking_sipping', 'door_wood_knock', 'mouse_click', 'keyboard_typing', 'door_wood_creaks', 'can_opening', 'washing_machine', 'vacuum_cleaner', 'clock_alarm', 'clock_tick', 'glass_breaking', 'helicopter', 'chainsaw', 'siren', 'car_horn', 'engine', 'train', 'church_bells', 'airplane', 'fireworks', 'hand_saw']
|
| 16 |
+
|
| 17 |
+
sed_model = HTSAT_Swin_Transformer(
|
| 18 |
+
spec_size=config.htsat_spec_size,
|
| 19 |
+
patch_size=config.htsat_patch_size,
|
| 20 |
+
in_chans=1,
|
| 21 |
+
num_classes=config.classes_num,
|
| 22 |
+
window_size=config.htsat_window_size,
|
| 23 |
+
config=config,
|
| 24 |
+
depths=config.htsat_depth,
|
| 25 |
+
embed_dim=config.htsat_dim,
|
| 26 |
+
patch_stride=config.htsat_stride,
|
| 27 |
+
num_heads=config.htsat_num_head
|
| 28 |
+
)
|
| 29 |
+
|
| 30 |
+
model = SEDWrapper(
|
| 31 |
+
sed_model=sed_model,
|
| 32 |
+
config=config,
|
| 33 |
+
dataset=None
|
| 34 |
+
)
|
| 35 |
+
|
| 36 |
+
ckpt = torch.load(config.resume_checkpoint, map_location="cpu")
|
| 37 |
+
model.load_state_dict(ckpt["state_dict"], strict=False)
|
| 38 |
+
|
| 39 |
+
def inference(audio):
|
| 40 |
+
sr, y = audio
|
| 41 |
+
y = y/32767.0 # scipy vs librosa
|
| 42 |
+
if len(y.shape) != 1: # to mono
|
| 43 |
+
y = y[:,0]
|
| 44 |
+
y = librosa.resample(y, orig_sr=sr, target_sr=32000)
|
| 45 |
+
in_val = np.array([y])
|
| 46 |
+
result = model.inference(in_val)
|
| 47 |
+
pred = result['clipwise_output'][0]
|
| 48 |
+
# pred = np.exp(pred)/np.sum(np.exp(pred)) # softmax
|
| 49 |
+
return {class_mapping[i]: float(p) for i, p in enumerate(pred)}
|
| 50 |
+
# win_classes = np.argmax(result['clipwise_output'], axis=1)
|
| 51 |
+
# win_class_index = win_classes[0]
|
| 52 |
+
# win_class_name = class_mapping[win_class_index]
|
| 53 |
+
# return str({win_class_name: result['clipwise_output'][0][win_class_index]})
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
title = "HTS-Audio-Transformer"
|
| 57 |
+
description = "Audio classificatio with ESC-50."
|
| 58 |
+
# article = "<p style='text-align: center'><a href='https://arxiv.org/abs/1911.13254' target='_blank'>Music Source Separation in the Waveform Domain</a> | <a href='https://github.com/facebookresearch/demucs' target='_blank'>Github Repo</a></p>"
|
| 59 |
+
|
| 60 |
+
examples = [['test.mp3']]
|
| 61 |
+
gr.Interface(
|
| 62 |
+
inference,
|
| 63 |
+
gr.inputs.Audio(type="numpy", label="Input"),
|
| 64 |
+
# gr.outputs.Textbox(),
|
| 65 |
+
gr.outputs.Label(),
|
| 66 |
+
title=title,
|
| 67 |
+
description=description,
|
| 68 |
+
# article=article,
|
| 69 |
+
examples=[[os.path.join(example_path, f)]
|
| 70 |
+
for f in os.listdir(example_path)]
|
| 71 |
+
).launch(enable_queue=True)
|
config.py
ADDED
|
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Ke Chen
|
| 2 | |
| 3 |
+
# HTS-AT: A HIERARCHICAL TOKEN-SEMANTIC AUDIO TRANSFORMER FOR SOUND CLASSIFICATION AND DETECTION
|
| 4 |
+
# The configuration for training the model
|
| 5 |
+
|
| 6 |
+
exp_name = "exp_htsat_pretrain" # the saved ckpt prefix name of the model
|
| 7 |
+
workspace = "/home/super/nic/HTS-Audio-Transformer" # the folder of your code
|
| 8 |
+
dataset_path = "/home/super/datasets-nas/ESC-50/" # the dataset path
|
| 9 |
+
desed_folder = "/home/super/nic/HTS-Audio-Transformer/DESED" # the desed file
|
| 10 |
+
|
| 11 |
+
dataset_type = "esc-50" # "audioset" "esc-50" "scv2"
|
| 12 |
+
index_type = "full_train" # only works for audioset
|
| 13 |
+
balanced_data = True # only works for audioset
|
| 14 |
+
|
| 15 |
+
loss_type = "clip_bce" #
|
| 16 |
+
# AudioSet & SCV2: "clip_bce" | ESC-50: "clip_ce"
|
| 17 |
+
|
| 18 |
+
# trained from a checkpoint, or evaluate a single model
|
| 19 |
+
# resume_checkpoint = None
|
| 20 |
+
# resume_checkpoint = "/home/super/nic/HTS-Audio-Transformer/saved_training/HTSAT_ESC_exp=1_fold=1_acc=0.985.ckpt"
|
| 21 |
+
resume_checkpoint = "/home/super/nic/HTS-Audio-Transformer/saved_training/HTSAT_ESC_exp=1_fold=1_acc=0.985.ckpt"
|
| 22 |
+
# resume_checkpoint = "/home/super/nic/HTS-Audio-Transformer/results/exp_htsat_pretrain/checkpoint_1/lightning_logs/version_9/checkpoints/l-epoch=99-acc=0.490.ckpt"
|
| 23 |
+
|
| 24 |
+
# "/home/Research/model_backup/AudioSet/HTSAT_AudioSet_Saved_1.ckpt"
|
| 25 |
+
|
| 26 |
+
esc_fold = 0 # just for esc dataset, select the fold you need for evaluation and (+1) validation
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
debug = False
|
| 30 |
+
|
| 31 |
+
random_seed = 970131 # 19970318 970131 12412 127777 1009 34047
|
| 32 |
+
batch_size = 32 * 1 # batch size per GPU x GPU number , default is 32 x 4 = 128
|
| 33 |
+
learning_rate = 1e-3 # 1e-4 also workable
|
| 34 |
+
max_epoch = 100
|
| 35 |
+
num_workers = 3
|
| 36 |
+
|
| 37 |
+
lr_scheduler_epoch = [10,20,30]
|
| 38 |
+
lr_rate = [0.02, 0.05, 0.1]
|
| 39 |
+
|
| 40 |
+
# these data preparation optimizations do not bring many improvements, so deprecated
|
| 41 |
+
enable_token_label = False # token label
|
| 42 |
+
class_map_path = "esc-50-data.npy"
|
| 43 |
+
class_filter = None
|
| 44 |
+
retrieval_index = [15382, 9202, 130, 17618, 17157, 17516, 16356, 6165, 13992, 9238, 5550, 5733, 1914, 1600, 3450, 13735, 11108, 3762,
|
| 45 |
+
9840, 11318, 8131, 4429, 16748, 4992, 16783, 12691, 4945, 8779, 2805, 9418, 2797, 14357, 5603, 212, 3852, 12666, 1338, 10269, 2388, 8260, 4293, 14454, 7677, 11253, 5060, 14938, 8840, 4542, 2627, 16336, 8992, 15496, 11140, 446, 6126, 10691, 8624, 10127, 9068, 16710, 10155, 14358, 7567, 5695, 2354, 8057, 17635, 133, 16183, 14535, 7248, 4560, 14429, 2463, 10773, 113, 2462, 9223, 4929, 14274, 4716, 17307, 4617, 2132, 11083, 1039, 1403, 9621, 13936, 2229, 2875, 17840, 9359, 13311, 9790, 13288, 4750, 17052, 8260, 14900]
|
| 46 |
+
token_label_range = [0.2,0.6]
|
| 47 |
+
enable_time_shift = False # shift time
|
| 48 |
+
enable_label_enhance = False # enhance hierarchical label
|
| 49 |
+
enable_repeat_mode = False # repeat the spectrogram / reshape the spectrogram
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
# for model's design
|
| 54 |
+
enable_tscam = True # enbale the token-semantic layer
|
| 55 |
+
|
| 56 |
+
# for signal processing
|
| 57 |
+
sample_rate = 32000 # 16000 for scv2, 32000 for audioset and esc-50
|
| 58 |
+
clip_samples = sample_rate * 10 # audio_set 10-sec clip
|
| 59 |
+
window_size = 1024
|
| 60 |
+
hop_size = 320 # 160 for scv2, 320 for audioset and esc-50
|
| 61 |
+
mel_bins = 64
|
| 62 |
+
fmin = 50
|
| 63 |
+
fmax = 14000
|
| 64 |
+
shift_max = int(clip_samples * 0.5)
|
| 65 |
+
|
| 66 |
+
# for data collection
|
| 67 |
+
classes_num = 50 # esc: 50 | audioset: 527 | scv2: 35
|
| 68 |
+
patch_size = (25, 4) # deprecated
|
| 69 |
+
crop_size = None # int(clip_samples * 0.5) deprecated
|
| 70 |
+
|
| 71 |
+
# for htsat hyperparamater
|
| 72 |
+
htsat_window_size = 8
|
| 73 |
+
htsat_spec_size = 256
|
| 74 |
+
htsat_patch_size = 4
|
| 75 |
+
htsat_stride = (4, 4)
|
| 76 |
+
htsat_num_head = [4,8,16,32]
|
| 77 |
+
htsat_dim = 96
|
| 78 |
+
htsat_depth = [2,2,6,2]
|
| 79 |
+
|
| 80 |
+
swin_pretrain_path = None
|
| 81 |
+
# "/home/Research/model_backup/pretrain/swin_tiny_c24_patch4_window8_256.pth"
|
| 82 |
+
|
| 83 |
+
# Some Deprecated Optimization in the model design, check the model code for details
|
| 84 |
+
htsat_attn_heatmap = False
|
| 85 |
+
htsat_hier_output = False
|
| 86 |
+
htsat_use_max = False
|
| 87 |
+
|
| 88 |
+
|
| 89 |
+
# for ensemble test
|
| 90 |
+
|
| 91 |
+
ensemble_checkpoints = []
|
| 92 |
+
ensemble_strides = []
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
# weight average folder
|
| 96 |
+
wa_folder = "/home/super/nic/HTS-Audio-Transformer/checkpoints/"
|
| 97 |
+
# weight average output filename
|
| 98 |
+
wa_model_path = "HTSAT_AudioSet_Saved_x.ckpt"
|
| 99 |
+
|
| 100 |
+
esm_model_pathes = [
|
| 101 |
+
"/home/super/nic/HTS-Audio-Transformer/HTSAT_AudioSet_Saved_1.ckpt",
|
| 102 |
+
"/home/super/nic/HTS-Audio-Transformer/HTSAT_AudioSet_Saved_2.ckpt",
|
| 103 |
+
"/home/super/nic/HTS-Audio-Transformer/HTSAT_AudioSet_Saved_3.ckpt",
|
| 104 |
+
"/home/super/nic/HTS-Audio-Transformer/HTSAT_AudioSet_Saved_4.ckpt",
|
| 105 |
+
"/home/super/nic/HTS-Audio-Transformer/HTSAT_AudioSet_Saved_5.ckpt",
|
| 106 |
+
"/home/super/nic/HTS-Audio-Transformer/HTSAT_AudioSet_Saved_6.ckpt"
|
| 107 |
+
]
|
| 108 |
+
|
| 109 |
+
# for framewise localization
|
| 110 |
+
heatmap_dir = "//home/super/nic/HTS-Audio-Transformer/heatmap_output"
|
| 111 |
+
test_file = "htsat-test-ensemble"
|
| 112 |
+
fl_local = False # indicate if we need to use this dataset for the framewise detection
|
| 113 |
+
fl_dataset = "/home/Research/desed/desed_eval.npy"
|
| 114 |
+
fl_class_num = [
|
| 115 |
+
"Speech", "Frying", "Dishes", "Running_water",
|
| 116 |
+
"Blender", "Electric_shaver_toothbrush", "Alarm_bell_ringing",
|
| 117 |
+
"Cat", "Dog", "Vacuum_cleaner"
|
| 118 |
+
]
|
| 119 |
+
|
| 120 |
+
# map 527 classes into 10 classes
|
| 121 |
+
fl_audioset_mapping = [
|
| 122 |
+
[0,1,2,3,4,5,6,7],
|
| 123 |
+
[366, 367, 368],
|
| 124 |
+
[364],
|
| 125 |
+
[288, 289, 290, 291, 292, 293, 294, 295, 296, 297],
|
| 126 |
+
[369],
|
| 127 |
+
[382],
|
| 128 |
+
[310, 388, 389, 390, 391, 392, 393, 394, 395, 396, 397, 398, 399, 400, 401, 402],
|
| 129 |
+
[81, 82, 83, 84, 85],
|
| 130 |
+
[74, 75, 76, 77, 78, 79],
|
| 131 |
+
[377]
|
| 132 |
+
]
|
examples_audio/2-82367-A-10.wav
ADDED
|
Binary file (320 kB). View file
|
|
|
examples_audio/4-255371-A-47.wav
ADDED
|
Binary file (320 kB). View file
|
|
|
examples_audio/urban_sound_98223-7-10-0.wav
ADDED
|
Binary file (175 kB). View file
|
|
|
model/htsat.py
ADDED
|
@@ -0,0 +1,836 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Ke Chen
|
| 2 | |
| 3 |
+
# HTS-AT: A HIERARCHICAL TOKEN-SEMANTIC AUDIO TRANSFORMER FOR SOUND CLASSIFICATION AND DETECTION
|
| 4 |
+
# Model Core
|
| 5 |
+
# below codes are based and referred from https://github.com/microsoft/Swin-Transformer
|
| 6 |
+
# Swin Transformer for Computer Vision: https://arxiv.org/pdf/2103.14030.pdf
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
import logging
|
| 10 |
+
import pdb
|
| 11 |
+
import math
|
| 12 |
+
import random
|
| 13 |
+
from numpy.core.fromnumeric import clip, reshape
|
| 14 |
+
import torch
|
| 15 |
+
import torch.nn as nn
|
| 16 |
+
import torch.utils.checkpoint as checkpoint
|
| 17 |
+
|
| 18 |
+
from torchlibrosa.stft import Spectrogram, LogmelFilterBank
|
| 19 |
+
from torchlibrosa.augmentation import SpecAugmentation
|
| 20 |
+
|
| 21 |
+
from itertools import repeat
|
| 22 |
+
from typing import List
|
| 23 |
+
from .layers import PatchEmbed, Mlp, DropPath, trunc_normal_, to_2tuple
|
| 24 |
+
from utils import do_mixup, interpolate
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# below codes are based and referred from https://github.com/microsoft/Swin-Transformer
|
| 28 |
+
# Swin Transformer for Computer Vision: https://arxiv.org/pdf/2103.14030.pdf
|
| 29 |
+
|
| 30 |
+
def window_partition(x, window_size):
|
| 31 |
+
"""
|
| 32 |
+
Args:
|
| 33 |
+
x: (B, H, W, C)
|
| 34 |
+
window_size (int): window size
|
| 35 |
+
Returns:
|
| 36 |
+
windows: (num_windows*B, window_size, window_size, C)
|
| 37 |
+
"""
|
| 38 |
+
B, H, W, C = x.shape
|
| 39 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
| 40 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
| 41 |
+
return windows
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def window_reverse(windows, window_size, H, W):
|
| 45 |
+
"""
|
| 46 |
+
Args:
|
| 47 |
+
windows: (num_windows*B, window_size, window_size, C)
|
| 48 |
+
window_size (int): Window size
|
| 49 |
+
H (int): Height of image
|
| 50 |
+
W (int): Width of image
|
| 51 |
+
Returns:
|
| 52 |
+
x: (B, H, W, C)
|
| 53 |
+
"""
|
| 54 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
| 55 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
| 56 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
| 57 |
+
return x
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
class WindowAttention(nn.Module):
|
| 61 |
+
r""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
| 62 |
+
It supports both of shifted and non-shifted window.
|
| 63 |
+
Args:
|
| 64 |
+
dim (int): Number of input channels.
|
| 65 |
+
window_size (tuple[int]): The height and width of the window.
|
| 66 |
+
num_heads (int): Number of attention heads.
|
| 67 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
| 68 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
| 69 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
| 70 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
| 71 |
+
"""
|
| 72 |
+
|
| 73 |
+
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
|
| 74 |
+
|
| 75 |
+
super().__init__()
|
| 76 |
+
self.dim = dim
|
| 77 |
+
self.window_size = window_size # Wh, Ww
|
| 78 |
+
self.num_heads = num_heads
|
| 79 |
+
head_dim = dim // num_heads
|
| 80 |
+
self.scale = qk_scale or head_dim ** -0.5
|
| 81 |
+
|
| 82 |
+
# define a parameter table of relative position bias
|
| 83 |
+
self.relative_position_bias_table = nn.Parameter(
|
| 84 |
+
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
| 85 |
+
|
| 86 |
+
# get pair-wise relative position index for each token inside the window
|
| 87 |
+
coords_h = torch.arange(self.window_size[0])
|
| 88 |
+
coords_w = torch.arange(self.window_size[1])
|
| 89 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w])) # 2, Wh, Ww
|
| 90 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
| 91 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
| 92 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
| 93 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
| 94 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
| 95 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
| 96 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
| 97 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
| 98 |
+
|
| 99 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
| 100 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
| 101 |
+
self.proj = nn.Linear(dim, dim)
|
| 102 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
| 103 |
+
|
| 104 |
+
trunc_normal_(self.relative_position_bias_table, std=.02)
|
| 105 |
+
self.softmax = nn.Softmax(dim=-1)
|
| 106 |
+
|
| 107 |
+
def forward(self, x, mask=None):
|
| 108 |
+
"""
|
| 109 |
+
Args:
|
| 110 |
+
x: input features with shape of (num_windows*B, N, C)
|
| 111 |
+
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
| 112 |
+
"""
|
| 113 |
+
B_, N, C = x.shape
|
| 114 |
+
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
| 115 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
| 116 |
+
|
| 117 |
+
q = q * self.scale
|
| 118 |
+
attn = (q @ k.transpose(-2, -1))
|
| 119 |
+
|
| 120 |
+
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
| 121 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
| 122 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
| 123 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
| 124 |
+
|
| 125 |
+
if mask is not None:
|
| 126 |
+
nW = mask.shape[0]
|
| 127 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
| 128 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
| 129 |
+
attn = self.softmax(attn)
|
| 130 |
+
else:
|
| 131 |
+
attn = self.softmax(attn)
|
| 132 |
+
|
| 133 |
+
attn = self.attn_drop(attn)
|
| 134 |
+
|
| 135 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
| 136 |
+
x = self.proj(x)
|
| 137 |
+
x = self.proj_drop(x)
|
| 138 |
+
return x, attn
|
| 139 |
+
|
| 140 |
+
def extra_repr(self):
|
| 141 |
+
return f'dim={self.dim}, window_size={self.window_size}, num_heads={self.num_heads}'
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
# We use the model based on Swintransformer Block, therefore we can use the swin-transformer pretrained model
|
| 145 |
+
class SwinTransformerBlock(nn.Module):
|
| 146 |
+
r""" Swin Transformer Block.
|
| 147 |
+
Args:
|
| 148 |
+
dim (int): Number of input channels.
|
| 149 |
+
input_resolution (tuple[int]): Input resulotion.
|
| 150 |
+
num_heads (int): Number of attention heads.
|
| 151 |
+
window_size (int): Window size.
|
| 152 |
+
shift_size (int): Shift size for SW-MSA.
|
| 153 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
| 154 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
| 155 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
| 156 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
| 157 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
| 158 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
| 159 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
| 160 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
| 161 |
+
"""
|
| 162 |
+
|
| 163 |
+
def __init__(self, dim, input_resolution, num_heads, window_size=7, shift_size=0,
|
| 164 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
|
| 165 |
+
act_layer=nn.GELU, norm_layer=nn.LayerNorm, norm_before_mlp='ln'):
|
| 166 |
+
super().__init__()
|
| 167 |
+
self.dim = dim
|
| 168 |
+
self.input_resolution = input_resolution
|
| 169 |
+
self.num_heads = num_heads
|
| 170 |
+
self.window_size = window_size
|
| 171 |
+
self.shift_size = shift_size
|
| 172 |
+
self.mlp_ratio = mlp_ratio
|
| 173 |
+
self.norm_before_mlp = norm_before_mlp
|
| 174 |
+
if min(self.input_resolution) <= self.window_size:
|
| 175 |
+
# if window size is larger than input resolution, we don't partition windows
|
| 176 |
+
self.shift_size = 0
|
| 177 |
+
self.window_size = min(self.input_resolution)
|
| 178 |
+
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
| 179 |
+
|
| 180 |
+
self.norm1 = norm_layer(dim)
|
| 181 |
+
self.attn = WindowAttention(
|
| 182 |
+
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
|
| 183 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
| 184 |
+
|
| 185 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
| 186 |
+
if self.norm_before_mlp == 'ln':
|
| 187 |
+
self.norm2 = nn.LayerNorm(dim)
|
| 188 |
+
elif self.norm_before_mlp == 'bn':
|
| 189 |
+
self.norm2 = lambda x: nn.BatchNorm1d(dim)(x.transpose(1, 2)).transpose(1, 2)
|
| 190 |
+
else:
|
| 191 |
+
raise NotImplementedError
|
| 192 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
| 193 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
| 194 |
+
|
| 195 |
+
if self.shift_size > 0:
|
| 196 |
+
# calculate attention mask for SW-MSA
|
| 197 |
+
H, W = self.input_resolution
|
| 198 |
+
img_mask = torch.zeros((1, H, W, 1)) # 1 H W 1
|
| 199 |
+
h_slices = (slice(0, -self.window_size),
|
| 200 |
+
slice(-self.window_size, -self.shift_size),
|
| 201 |
+
slice(-self.shift_size, None))
|
| 202 |
+
w_slices = (slice(0, -self.window_size),
|
| 203 |
+
slice(-self.window_size, -self.shift_size),
|
| 204 |
+
slice(-self.shift_size, None))
|
| 205 |
+
cnt = 0
|
| 206 |
+
for h in h_slices:
|
| 207 |
+
for w in w_slices:
|
| 208 |
+
img_mask[:, h, w, :] = cnt
|
| 209 |
+
cnt += 1
|
| 210 |
+
|
| 211 |
+
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
|
| 212 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
| 213 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
| 214 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
| 215 |
+
else:
|
| 216 |
+
attn_mask = None
|
| 217 |
+
|
| 218 |
+
self.register_buffer("attn_mask", attn_mask)
|
| 219 |
+
|
| 220 |
+
def forward(self, x):
|
| 221 |
+
# pdb.set_trace()
|
| 222 |
+
H, W = self.input_resolution
|
| 223 |
+
# print("H: ", H)
|
| 224 |
+
# print("W: ", W)
|
| 225 |
+
# pdb.set_trace()
|
| 226 |
+
B, L, C = x.shape
|
| 227 |
+
# assert L == H * W, "input feature has wrong size"
|
| 228 |
+
|
| 229 |
+
shortcut = x
|
| 230 |
+
x = self.norm1(x)
|
| 231 |
+
x = x.view(B, H, W, C)
|
| 232 |
+
|
| 233 |
+
# cyclic shift
|
| 234 |
+
if self.shift_size > 0:
|
| 235 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
| 236 |
+
else:
|
| 237 |
+
shifted_x = x
|
| 238 |
+
|
| 239 |
+
# partition windows
|
| 240 |
+
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
|
| 241 |
+
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
|
| 242 |
+
|
| 243 |
+
# W-MSA/SW-MSA
|
| 244 |
+
attn_windows, attn = self.attn(x_windows, mask=self.attn_mask) # nW*B, window_size*window_size, C
|
| 245 |
+
|
| 246 |
+
# merge windows
|
| 247 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
| 248 |
+
shifted_x = window_reverse(attn_windows, self.window_size, H, W) # B H' W' C
|
| 249 |
+
|
| 250 |
+
# reverse cyclic shift
|
| 251 |
+
if self.shift_size > 0:
|
| 252 |
+
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
| 253 |
+
else:
|
| 254 |
+
x = shifted_x
|
| 255 |
+
x = x.view(B, H * W, C)
|
| 256 |
+
|
| 257 |
+
# FFN
|
| 258 |
+
x = shortcut + self.drop_path(x)
|
| 259 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
| 260 |
+
|
| 261 |
+
return x, attn
|
| 262 |
+
|
| 263 |
+
def extra_repr(self):
|
| 264 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " \
|
| 265 |
+
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}"
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
|
| 269 |
+
class PatchMerging(nn.Module):
|
| 270 |
+
r""" Patch Merging Layer.
|
| 271 |
+
Args:
|
| 272 |
+
input_resolution (tuple[int]): Resolution of input feature.
|
| 273 |
+
dim (int): Number of input channels.
|
| 274 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
| 275 |
+
"""
|
| 276 |
+
|
| 277 |
+
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
|
| 278 |
+
super().__init__()
|
| 279 |
+
self.input_resolution = input_resolution
|
| 280 |
+
self.dim = dim
|
| 281 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
| 282 |
+
self.norm = norm_layer(4 * dim)
|
| 283 |
+
|
| 284 |
+
def forward(self, x):
|
| 285 |
+
"""
|
| 286 |
+
x: B, H*W, C
|
| 287 |
+
"""
|
| 288 |
+
H, W = self.input_resolution
|
| 289 |
+
B, L, C = x.shape
|
| 290 |
+
assert L == H * W, "input feature has wrong size"
|
| 291 |
+
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
|
| 292 |
+
|
| 293 |
+
x = x.view(B, H, W, C)
|
| 294 |
+
|
| 295 |
+
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
| 296 |
+
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
| 297 |
+
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
| 298 |
+
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
| 299 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
| 300 |
+
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
| 301 |
+
|
| 302 |
+
x = self.norm(x)
|
| 303 |
+
x = self.reduction(x)
|
| 304 |
+
|
| 305 |
+
return x
|
| 306 |
+
|
| 307 |
+
def extra_repr(self):
|
| 308 |
+
return f"input_resolution={self.input_resolution}, dim={self.dim}"
|
| 309 |
+
|
| 310 |
+
|
| 311 |
+
class BasicLayer(nn.Module):
|
| 312 |
+
""" A basic Swin Transformer layer for one stage.
|
| 313 |
+
Args:
|
| 314 |
+
dim (int): Number of input channels.
|
| 315 |
+
input_resolution (tuple[int]): Input resolution.
|
| 316 |
+
depth (int): Number of blocks.
|
| 317 |
+
num_heads (int): Number of attention heads.
|
| 318 |
+
window_size (int): Local window size.
|
| 319 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
| 320 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
| 321 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
| 322 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
| 323 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
| 324 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
| 325 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
| 326 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
| 327 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
| 328 |
+
"""
|
| 329 |
+
|
| 330 |
+
def __init__(self, dim, input_resolution, depth, num_heads, window_size,
|
| 331 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0.,
|
| 332 |
+
drop_path=0., norm_layer=nn.LayerNorm, downsample=None, use_checkpoint=False,
|
| 333 |
+
norm_before_mlp='ln'):
|
| 334 |
+
|
| 335 |
+
super().__init__()
|
| 336 |
+
self.dim = dim
|
| 337 |
+
self.input_resolution = input_resolution
|
| 338 |
+
self.depth = depth
|
| 339 |
+
self.use_checkpoint = use_checkpoint
|
| 340 |
+
|
| 341 |
+
# build blocks
|
| 342 |
+
self.blocks = nn.ModuleList([
|
| 343 |
+
SwinTransformerBlock(dim=dim, input_resolution=input_resolution,
|
| 344 |
+
num_heads=num_heads, window_size=window_size,
|
| 345 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
| 346 |
+
mlp_ratio=mlp_ratio,
|
| 347 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale,
|
| 348 |
+
drop=drop, attn_drop=attn_drop,
|
| 349 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
| 350 |
+
norm_layer=norm_layer, norm_before_mlp=norm_before_mlp)
|
| 351 |
+
for i in range(depth)])
|
| 352 |
+
|
| 353 |
+
# patch merging layer
|
| 354 |
+
if downsample is not None:
|
| 355 |
+
self.downsample = downsample(input_resolution, dim=dim, norm_layer=norm_layer)
|
| 356 |
+
else:
|
| 357 |
+
self.downsample = None
|
| 358 |
+
|
| 359 |
+
def forward(self, x):
|
| 360 |
+
attns = []
|
| 361 |
+
for blk in self.blocks:
|
| 362 |
+
if self.use_checkpoint:
|
| 363 |
+
x = checkpoint.checkpoint(blk, x)
|
| 364 |
+
else:
|
| 365 |
+
x, attn = blk(x)
|
| 366 |
+
if not self.training:
|
| 367 |
+
attns.append(attn.unsqueeze(0))
|
| 368 |
+
if self.downsample is not None:
|
| 369 |
+
x = self.downsample(x)
|
| 370 |
+
if not self.training:
|
| 371 |
+
attn = torch.cat(attns, dim = 0)
|
| 372 |
+
attn = torch.mean(attn, dim = 0)
|
| 373 |
+
return x, attn
|
| 374 |
+
|
| 375 |
+
def extra_repr(self):
|
| 376 |
+
return f"dim={self.dim}, input_resolution={self.input_resolution}, depth={self.depth}"
|
| 377 |
+
|
| 378 |
+
|
| 379 |
+
# The Core of HTSAT
|
| 380 |
+
class HTSAT_Swin_Transformer(nn.Module):
|
| 381 |
+
r"""HTSAT based on the Swin Transformer
|
| 382 |
+
Args:
|
| 383 |
+
spec_size (int | tuple(int)): Input Spectrogram size. Default 256
|
| 384 |
+
patch_size (int | tuple(int)): Patch size. Default: 4
|
| 385 |
+
path_stride (iot | tuple(int)): Patch Stride for Frequency and Time Axis. Default: 4
|
| 386 |
+
in_chans (int): Number of input image channels. Default: 1 (mono)
|
| 387 |
+
num_classes (int): Number of classes for classification head. Default: 527
|
| 388 |
+
embed_dim (int): Patch embedding dimension. Default: 96
|
| 389 |
+
depths (tuple(int)): Depth of each HTSAT-Swin Transformer layer.
|
| 390 |
+
num_heads (tuple(int)): Number of attention heads in different layers.
|
| 391 |
+
window_size (int): Window size. Default: 8
|
| 392 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4
|
| 393 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
| 394 |
+
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set. Default: None
|
| 395 |
+
drop_rate (float): Dropout rate. Default: 0
|
| 396 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0
|
| 397 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.1
|
| 398 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
| 399 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False
|
| 400 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True
|
| 401 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False
|
| 402 |
+
config (module): The configuration Module from config.py
|
| 403 |
+
"""
|
| 404 |
+
|
| 405 |
+
def __init__(self, spec_size=256, patch_size=4, patch_stride=(4,4),
|
| 406 |
+
in_chans=1, num_classes=527,
|
| 407 |
+
embed_dim=96, depths=[2, 2, 6, 2], num_heads=[4, 8, 16, 32],
|
| 408 |
+
window_size=8, mlp_ratio=4., qkv_bias=True, qk_scale=None,
|
| 409 |
+
drop_rate=0., attn_drop_rate=0., drop_path_rate=0.1,
|
| 410 |
+
norm_layer=nn.LayerNorm,
|
| 411 |
+
ape=False, patch_norm=True,
|
| 412 |
+
use_checkpoint=False, norm_before_mlp='ln', config = None, **kwargs):
|
| 413 |
+
super(HTSAT_Swin_Transformer, self).__init__()
|
| 414 |
+
|
| 415 |
+
self.config = config
|
| 416 |
+
self.spec_size = spec_size
|
| 417 |
+
self.patch_stride = patch_stride
|
| 418 |
+
self.patch_size = patch_size
|
| 419 |
+
self.window_size = window_size
|
| 420 |
+
self.embed_dim = embed_dim
|
| 421 |
+
self.depths = depths
|
| 422 |
+
self.ape = ape
|
| 423 |
+
self.in_chans = in_chans
|
| 424 |
+
self.num_classes = num_classes
|
| 425 |
+
self.num_heads = num_heads
|
| 426 |
+
self.num_layers = len(self.depths)
|
| 427 |
+
self.num_features = int(self.embed_dim * 2 ** (self.num_layers - 1))
|
| 428 |
+
|
| 429 |
+
self.drop_rate = drop_rate
|
| 430 |
+
self.attn_drop_rate = attn_drop_rate
|
| 431 |
+
self.drop_path_rate = drop_path_rate
|
| 432 |
+
|
| 433 |
+
self.qkv_bias = qkv_bias
|
| 434 |
+
self.qk_scale = None
|
| 435 |
+
|
| 436 |
+
self.patch_norm = patch_norm
|
| 437 |
+
self.norm_layer = norm_layer if self.patch_norm else None
|
| 438 |
+
self.norm_before_mlp = norm_before_mlp
|
| 439 |
+
self.mlp_ratio = mlp_ratio
|
| 440 |
+
|
| 441 |
+
self.use_checkpoint = use_checkpoint
|
| 442 |
+
|
| 443 |
+
# process mel-spec ; used only once
|
| 444 |
+
self.freq_ratio = self.spec_size // self.config.mel_bins
|
| 445 |
+
window = 'hann'
|
| 446 |
+
center = True
|
| 447 |
+
pad_mode = 'reflect'
|
| 448 |
+
ref = 1.0
|
| 449 |
+
amin = 1e-10
|
| 450 |
+
top_db = None
|
| 451 |
+
self.interpolate_ratio = 32 # Downsampled ratio
|
| 452 |
+
# Spectrogram extractor
|
| 453 |
+
self.spectrogram_extractor = Spectrogram(n_fft=config.window_size, hop_length=config.hop_size,
|
| 454 |
+
win_length=config.window_size, window=window, center=center, pad_mode=pad_mode,
|
| 455 |
+
freeze_parameters=True)
|
| 456 |
+
# Logmel feature extractor
|
| 457 |
+
self.logmel_extractor = LogmelFilterBank(sr=config.sample_rate, n_fft=config.window_size,
|
| 458 |
+
n_mels=config.mel_bins, fmin=config.fmin, fmax=config.fmax, ref=ref, amin=amin, top_db=top_db,
|
| 459 |
+
freeze_parameters=True)
|
| 460 |
+
# Spec augmenter
|
| 461 |
+
self.spec_augmenter = SpecAugmentation(time_drop_width=64, time_stripes_num=2,
|
| 462 |
+
freq_drop_width=8, freq_stripes_num=2) # 2 2
|
| 463 |
+
self.bn0 = nn.BatchNorm2d(self.config.mel_bins)
|
| 464 |
+
|
| 465 |
+
|
| 466 |
+
# split spctrogram into non-overlapping patches
|
| 467 |
+
self.patch_embed = PatchEmbed(
|
| 468 |
+
img_size=self.spec_size, patch_size=self.patch_size, in_chans=self.in_chans,
|
| 469 |
+
embed_dim=self.embed_dim, norm_layer=self.norm_layer, patch_stride = patch_stride)
|
| 470 |
+
|
| 471 |
+
num_patches = self.patch_embed.num_patches
|
| 472 |
+
patches_resolution = self.patch_embed.grid_size
|
| 473 |
+
self.patches_resolution = patches_resolution
|
| 474 |
+
|
| 475 |
+
# absolute position embedding
|
| 476 |
+
if self.ape:
|
| 477 |
+
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, num_patches, self.embed_dim))
|
| 478 |
+
trunc_normal_(self.absolute_pos_embed, std=.02)
|
| 479 |
+
|
| 480 |
+
self.pos_drop = nn.Dropout(p=self.drop_rate)
|
| 481 |
+
|
| 482 |
+
# stochastic depth
|
| 483 |
+
dpr = [x.item() for x in torch.linspace(0, self.drop_path_rate, sum(self.depths))] # stochastic depth decay rule
|
| 484 |
+
|
| 485 |
+
# build layers
|
| 486 |
+
self.layers = nn.ModuleList()
|
| 487 |
+
for i_layer in range(self.num_layers):
|
| 488 |
+
layer = BasicLayer(dim=int(self.embed_dim * 2 ** i_layer),
|
| 489 |
+
input_resolution=(patches_resolution[0] // (2 ** i_layer),
|
| 490 |
+
patches_resolution[1] // (2 ** i_layer)),
|
| 491 |
+
depth=self.depths[i_layer],
|
| 492 |
+
num_heads=self.num_heads[i_layer],
|
| 493 |
+
window_size=self.window_size,
|
| 494 |
+
mlp_ratio=self.mlp_ratio,
|
| 495 |
+
qkv_bias=self.qkv_bias, qk_scale=self.qk_scale,
|
| 496 |
+
drop=self.drop_rate, attn_drop=self.attn_drop_rate,
|
| 497 |
+
drop_path=dpr[sum(self.depths[:i_layer]):sum(self.depths[:i_layer + 1])],
|
| 498 |
+
norm_layer=self.norm_layer,
|
| 499 |
+
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
|
| 500 |
+
use_checkpoint=use_checkpoint,
|
| 501 |
+
norm_before_mlp=self.norm_before_mlp)
|
| 502 |
+
self.layers.append(layer)
|
| 503 |
+
|
| 504 |
+
# A deprecated optimization for using a hierarchical output from different blocks
|
| 505 |
+
# if self.config.htsat_hier_output:
|
| 506 |
+
# self.norm = nn.ModuleList(
|
| 507 |
+
# [self.norm_layer(
|
| 508 |
+
# min(
|
| 509 |
+
# self.embed_dim * (2 ** (len(self.depths) - 1)),
|
| 510 |
+
# self.embed_dim * (2 ** (i + 1))
|
| 511 |
+
# )
|
| 512 |
+
# ) for i in range(len(self.depths))]
|
| 513 |
+
# )
|
| 514 |
+
# else:
|
| 515 |
+
|
| 516 |
+
self.norm = self.norm_layer(self.num_features)
|
| 517 |
+
self.avgpool = nn.AdaptiveAvgPool1d(1)
|
| 518 |
+
self.maxpool = nn.AdaptiveMaxPool1d(1)
|
| 519 |
+
|
| 520 |
+
# A deprecated optimization for using the max value instead of average value
|
| 521 |
+
# if self.config.htsat_use_max:
|
| 522 |
+
# self.a_avgpool = nn.AvgPool1d(kernel_size=3, stride=1, padding=1)
|
| 523 |
+
# self.a_maxpool = nn.MaxPool1d(kernel_size=3, stride=1, padding=1)
|
| 524 |
+
|
| 525 |
+
if self.config.enable_tscam:
|
| 526 |
+
# if self.config.htsat_hier_output:
|
| 527 |
+
# self.tscam_conv = nn.ModuleList()
|
| 528 |
+
# for i in range(len(self.depths)):
|
| 529 |
+
# zoom_ratio = 2 ** min(len(self.depths) - 1, i + 1)
|
| 530 |
+
# zoom_dim = min(
|
| 531 |
+
# self.embed_dim * (2 ** (len(self.depths) - 1)),
|
| 532 |
+
# self.embed_dim * (2 ** (i + 1))
|
| 533 |
+
# )
|
| 534 |
+
# SF = self.spec_size // zoom_ratio // self.patch_stride[0] // self.freq_ratio
|
| 535 |
+
# self.tscam_conv.append(
|
| 536 |
+
# nn.Conv2d(
|
| 537 |
+
# in_channels = zoom_dim,
|
| 538 |
+
# out_channels = self.num_classes,
|
| 539 |
+
# kernel_size = (SF, 3),
|
| 540 |
+
# padding = (0,1)
|
| 541 |
+
# )
|
| 542 |
+
# )
|
| 543 |
+
# self.head = nn.Linear(num_classes * len(self.depths), num_classes)
|
| 544 |
+
# else:
|
| 545 |
+
|
| 546 |
+
SF = self.spec_size // (2 ** (len(self.depths) - 1)) // self.patch_stride[0] // self.freq_ratio
|
| 547 |
+
self.tscam_conv = nn.Conv2d(
|
| 548 |
+
in_channels = self.num_features,
|
| 549 |
+
out_channels = self.num_classes,
|
| 550 |
+
kernel_size = (SF,3),
|
| 551 |
+
padding = (0,1)
|
| 552 |
+
)
|
| 553 |
+
self.head = nn.Linear(num_classes, num_classes)
|
| 554 |
+
else:
|
| 555 |
+
self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()
|
| 556 |
+
|
| 557 |
+
self.apply(self._init_weights)
|
| 558 |
+
|
| 559 |
+
def _init_weights(self, m):
|
| 560 |
+
if isinstance(m, nn.Linear):
|
| 561 |
+
trunc_normal_(m.weight, std=.02)
|
| 562 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
| 563 |
+
nn.init.constant_(m.bias, 0)
|
| 564 |
+
elif isinstance(m, nn.LayerNorm):
|
| 565 |
+
nn.init.constant_(m.bias, 0)
|
| 566 |
+
nn.init.constant_(m.weight, 1.0)
|
| 567 |
+
|
| 568 |
+
@torch.jit.ignore
|
| 569 |
+
def no_weight_decay(self):
|
| 570 |
+
return {'absolute_pos_embed'}
|
| 571 |
+
|
| 572 |
+
@torch.jit.ignore
|
| 573 |
+
def no_weight_decay_keywords(self):
|
| 574 |
+
return {'relative_position_bias_table'}
|
| 575 |
+
|
| 576 |
+
|
| 577 |
+
def forward_features(self, x):
|
| 578 |
+
# A deprecated optimization for using a hierarchical output from different blocks
|
| 579 |
+
# if self.config.htsat_hier_output:
|
| 580 |
+
# hier_x = []
|
| 581 |
+
# hier_attn = []
|
| 582 |
+
|
| 583 |
+
frames_num = x.shape[2]
|
| 584 |
+
x = self.patch_embed(x)
|
| 585 |
+
if self.ape:
|
| 586 |
+
x = x + self.absolute_pos_embed
|
| 587 |
+
x = self.pos_drop(x)
|
| 588 |
+
for i, layer in enumerate(self.layers):
|
| 589 |
+
x, attn = layer(x)
|
| 590 |
+
# A deprecated optimization for using a hierarchical output from different blocks
|
| 591 |
+
# if self.config.htsat_hier_output:
|
| 592 |
+
# hier_x.append(x)
|
| 593 |
+
# if i == len(self.layers) - 1:
|
| 594 |
+
# hier_attn.append(attn)
|
| 595 |
+
|
| 596 |
+
# A deprecated optimization for using a hierarchical output from different blocks
|
| 597 |
+
# if self.config.htsat_hier_output:
|
| 598 |
+
# hxs = []
|
| 599 |
+
# fphxs = []
|
| 600 |
+
# for i in range(len(hier_x)):
|
| 601 |
+
# hx = hier_x[i]
|
| 602 |
+
# hx = self.norm[i](hx)
|
| 603 |
+
# B, N, C = hx.shape
|
| 604 |
+
# zoom_ratio = 2 ** min(len(self.depths) - 1, i + 1)
|
| 605 |
+
# SF = frames_num // zoom_ratio // self.patch_stride[0]
|
| 606 |
+
# ST = frames_num // zoom_ratio // self.patch_stride[1]
|
| 607 |
+
# hx = hx.permute(0,2,1).contiguous().reshape(B, C, SF, ST)
|
| 608 |
+
# B, C, F, T = hx.shape
|
| 609 |
+
# c_freq_bin = F // self.freq_ratio
|
| 610 |
+
# hx = hx.reshape(B, C, F // c_freq_bin, c_freq_bin, T)
|
| 611 |
+
# hx = hx.permute(0,1,3,2,4).contiguous().reshape(B, C, c_freq_bin, -1)
|
| 612 |
+
|
| 613 |
+
# hx = self.tscam_conv[i](hx)
|
| 614 |
+
# hx = torch.flatten(hx, 2)
|
| 615 |
+
# fphx = interpolate(hx.permute(0,2,1).contiguous(), self.spec_size * self.freq_ratio // hx.shape[2])
|
| 616 |
+
|
| 617 |
+
# hx = self.avgpool(hx)
|
| 618 |
+
# hx = torch.flatten(hx, 1)
|
| 619 |
+
# hxs.append(hx)
|
| 620 |
+
# fphxs.append(fphx)
|
| 621 |
+
# hxs = torch.cat(hxs, dim=1)
|
| 622 |
+
# fphxs = torch.cat(fphxs, dim = 2)
|
| 623 |
+
# hxs = self.head(hxs)
|
| 624 |
+
# fphxs = self.head(fphxs)
|
| 625 |
+
# output_dict = {'framewise_output': torch.sigmoid(fphxs),
|
| 626 |
+
# 'clipwise_output': torch.sigmoid(hxs)}
|
| 627 |
+
# return output_dict
|
| 628 |
+
|
| 629 |
+
if self.config.enable_tscam:
|
| 630 |
+
# for x
|
| 631 |
+
x = self.norm(x)
|
| 632 |
+
B, N, C = x.shape
|
| 633 |
+
SF = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[0]
|
| 634 |
+
ST = frames_num // (2 ** (len(self.depths) - 1)) // self.patch_stride[1]
|
| 635 |
+
x = x.permute(0,2,1).contiguous().reshape(B, C, SF, ST)
|
| 636 |
+
B, C, F, T = x.shape
|
| 637 |
+
# group 2D CNN
|
| 638 |
+
c_freq_bin = F // self.freq_ratio
|
| 639 |
+
x = x.reshape(B, C, F // c_freq_bin, c_freq_bin, T)
|
| 640 |
+
x = x.permute(0,1,3,2,4).contiguous().reshape(B, C, c_freq_bin, -1)
|
| 641 |
+
|
| 642 |
+
# get latent_output
|
| 643 |
+
latent_output = self.avgpool(torch.flatten(x,2))
|
| 644 |
+
latent_output = torch.flatten(latent_output, 1)
|
| 645 |
+
|
| 646 |
+
# display the attention map, if needed
|
| 647 |
+
if self.config.htsat_attn_heatmap:
|
| 648 |
+
# for attn
|
| 649 |
+
attn = torch.mean(attn, dim = 1)
|
| 650 |
+
attn = torch.mean(attn, dim = 1)
|
| 651 |
+
attn = attn.reshape(B, SF, ST)
|
| 652 |
+
c_freq_bin = SF // self.freq_ratio
|
| 653 |
+
attn = attn.reshape(B, SF // c_freq_bin, c_freq_bin, ST)
|
| 654 |
+
attn = attn.permute(0,2,1,3).contiguous().reshape(B, c_freq_bin, -1)
|
| 655 |
+
attn = attn.mean(dim = 1)
|
| 656 |
+
attn_max = torch.max(attn, dim = 1, keepdim = True)[0]
|
| 657 |
+
attn_min = torch.min(attn, dim = 1, keepdim = True)[0]
|
| 658 |
+
attn = ((attn * 0.15) + (attn_max * 0.85 - attn_min)) / (attn_max - attn_min)
|
| 659 |
+
attn = attn.unsqueeze(dim = 2)
|
| 660 |
+
|
| 661 |
+
x = self.tscam_conv(x)
|
| 662 |
+
x = torch.flatten(x, 2) # B, C, T
|
| 663 |
+
|
| 664 |
+
# A deprecated optimization for using the max value instead of average value
|
| 665 |
+
# if self.config.htsat_use_max:
|
| 666 |
+
# x1 = self.a_maxpool(x)
|
| 667 |
+
# x2 = self.a_avgpool(x)
|
| 668 |
+
# x = x1 + x2
|
| 669 |
+
|
| 670 |
+
if self.config.htsat_attn_heatmap:
|
| 671 |
+
fpx = interpolate(torch.sigmoid(x).permute(0,2,1).contiguous() * attn, 8 * self.patch_stride[1])
|
| 672 |
+
else:
|
| 673 |
+
fpx = interpolate(torch.sigmoid(x).permute(0,2,1).contiguous(), 8 * self.patch_stride[1])
|
| 674 |
+
|
| 675 |
+
# A deprecated optimization for using the max value instead of average value
|
| 676 |
+
# if self.config.htsat_use_max:
|
| 677 |
+
# x1 = self.avgpool(x)
|
| 678 |
+
# x2 = self.maxpool(x)
|
| 679 |
+
# x = x1 + x2
|
| 680 |
+
# else:
|
| 681 |
+
x = self.avgpool(x)
|
| 682 |
+
x = torch.flatten(x, 1)
|
| 683 |
+
|
| 684 |
+
if self.config.loss_type == "clip_ce":
|
| 685 |
+
output_dict = {
|
| 686 |
+
'framewise_output': fpx, # already sigmoided
|
| 687 |
+
'clipwise_output': x,
|
| 688 |
+
'latent_output': latent_output
|
| 689 |
+
}
|
| 690 |
+
else:
|
| 691 |
+
output_dict = {
|
| 692 |
+
'framewise_output': fpx, # already sigmoided
|
| 693 |
+
'clipwise_output': torch.sigmoid(x),
|
| 694 |
+
'latent_output': latent_output
|
| 695 |
+
}
|
| 696 |
+
|
| 697 |
+
else:
|
| 698 |
+
x = self.norm(x) # B N C
|
| 699 |
+
B, N, C = x.shape
|
| 700 |
+
|
| 701 |
+
fpx = x.permute(0,2,1).contiguous().reshape(B, C, frames_num // (2 ** (len(self.depths) + 1)), frames_num // (2 ** (len(self.depths) + 1)) )
|
| 702 |
+
B, C, F, T = fpx.shape
|
| 703 |
+
c_freq_bin = F // self.freq_ratio
|
| 704 |
+
fpx = fpx.reshape(B, C, F // c_freq_bin, c_freq_bin, T)
|
| 705 |
+
fpx = fpx.permute(0,1,3,2,4).contiguous().reshape(B, C, c_freq_bin, -1)
|
| 706 |
+
fpx = torch.sum(fpx, dim = 2)
|
| 707 |
+
fpx = interpolate(fpx.permute(0,2,1).contiguous(), 8 * self.patch_stride[1])
|
| 708 |
+
x = self.avgpool(x.transpose(1, 2)) # B C 1
|
| 709 |
+
x = torch.flatten(x, 1)
|
| 710 |
+
if self.num_classes > 0:
|
| 711 |
+
x = self.head(x)
|
| 712 |
+
fpx = self.head(fpx)
|
| 713 |
+
output_dict = {'framewise_output': torch.sigmoid(fpx),
|
| 714 |
+
'clipwise_output': torch.sigmoid(x)}
|
| 715 |
+
return output_dict
|
| 716 |
+
|
| 717 |
+
def crop_wav(self, x, crop_size, spe_pos = None):
|
| 718 |
+
time_steps = x.shape[2]
|
| 719 |
+
tx = torch.zeros(x.shape[0], x.shape[1], crop_size, x.shape[3]).to(x.device)
|
| 720 |
+
for i in range(len(x)):
|
| 721 |
+
if spe_pos is None:
|
| 722 |
+
crop_pos = random.randint(0, time_steps - crop_size - 1)
|
| 723 |
+
else:
|
| 724 |
+
crop_pos = spe_pos
|
| 725 |
+
tx[i][0] = x[i, 0, crop_pos:crop_pos + crop_size,:]
|
| 726 |
+
return tx
|
| 727 |
+
|
| 728 |
+
# Reshape the wavform to a img size, if you want to use the pretrained swin transformer model
|
| 729 |
+
def reshape_wav2img(self, x):
|
| 730 |
+
B, C, T, F = x.shape
|
| 731 |
+
target_T = int(self.spec_size * self.freq_ratio)
|
| 732 |
+
target_F = self.spec_size // self.freq_ratio
|
| 733 |
+
assert T <= target_T and F <= target_F, "the wav size should less than or equal to the swin input size"
|
| 734 |
+
# to avoid bicubic zero error
|
| 735 |
+
if T < target_T:
|
| 736 |
+
x = nn.functional.interpolate(x, (target_T, x.shape[3]), mode="bicubic", align_corners=True)
|
| 737 |
+
if F < target_F:
|
| 738 |
+
x = nn.functional.interpolate(x, (x.shape[2], target_F), mode="bicubic", align_corners=True)
|
| 739 |
+
x = x.permute(0,1,3,2).contiguous()
|
| 740 |
+
x = x.reshape(x.shape[0], x.shape[1], x.shape[2], self.freq_ratio, x.shape[3] // self.freq_ratio)
|
| 741 |
+
# print(x.shape)
|
| 742 |
+
x = x.permute(0,1,3,2,4).contiguous()
|
| 743 |
+
x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3], x.shape[4])
|
| 744 |
+
return x
|
| 745 |
+
|
| 746 |
+
# Repeat the wavform to a img size, if you want to use the pretrained swin transformer model
|
| 747 |
+
def repeat_wat2img(self, x, cur_pos):
|
| 748 |
+
B, C, T, F = x.shape
|
| 749 |
+
target_T = int(self.spec_size * self.freq_ratio)
|
| 750 |
+
target_F = self.spec_size // self.freq_ratio
|
| 751 |
+
assert T <= target_T and F <= target_F, "the wav size should less than or equal to the swin input size"
|
| 752 |
+
# to avoid bicubic zero error
|
| 753 |
+
if T < target_T:
|
| 754 |
+
x = nn.functional.interpolate(x, (target_T, x.shape[3]), mode="bicubic", align_corners=True)
|
| 755 |
+
if F < target_F:
|
| 756 |
+
x = nn.functional.interpolate(x, (x.shape[2], target_F), mode="bicubic", align_corners=True)
|
| 757 |
+
x = x.permute(0,1,3,2).contiguous() # B C F T
|
| 758 |
+
x = x[:,:,:,cur_pos:cur_pos + self.spec_size]
|
| 759 |
+
x = x.repeat(repeats = (1,1,4,1))
|
| 760 |
+
return x
|
| 761 |
+
|
| 762 |
+
def forward(self, x: torch.Tensor, mixup_lambda = None, infer_mode = False):# out_feat_keys: List[str] = None):
|
| 763 |
+
x = self.spectrogram_extractor(x) # (batch_size, 1, time_steps, freq_bins)
|
| 764 |
+
x = self.logmel_extractor(x) # (batch_size, 1, time_steps, mel_bins)
|
| 765 |
+
|
| 766 |
+
|
| 767 |
+
x = x.transpose(1, 3)
|
| 768 |
+
x = self.bn0(x)
|
| 769 |
+
x = x.transpose(1, 3)
|
| 770 |
+
if self.training:
|
| 771 |
+
x = self.spec_augmenter(x)
|
| 772 |
+
if self.training and mixup_lambda is not None:
|
| 773 |
+
x = do_mixup(x, mixup_lambda)
|
| 774 |
+
|
| 775 |
+
if infer_mode:
|
| 776 |
+
# in infer mode. we need to handle different length audio input
|
| 777 |
+
frame_num = x.shape[2]
|
| 778 |
+
target_T = int(self.spec_size * self.freq_ratio)
|
| 779 |
+
repeat_ratio = math.floor(target_T / frame_num)
|
| 780 |
+
x = x.repeat(repeats=(1,1,repeat_ratio,1))
|
| 781 |
+
x = self.reshape_wav2img(x)
|
| 782 |
+
output_dict = self.forward_features(x)
|
| 783 |
+
elif self.config.enable_repeat_mode:
|
| 784 |
+
if self.training:
|
| 785 |
+
cur_pos = random.randint(0, (self.freq_ratio - 1) * self.spec_size - 1)
|
| 786 |
+
x = self.repeat_wat2img(x, cur_pos)
|
| 787 |
+
output_dict = self.forward_features(x)
|
| 788 |
+
else:
|
| 789 |
+
output_dicts = []
|
| 790 |
+
for cur_pos in range(0, (self.freq_ratio - 1) * self.spec_size + 1, self.spec_size):
|
| 791 |
+
tx = x.clone()
|
| 792 |
+
tx = self.repeat_wat2img(tx, cur_pos)
|
| 793 |
+
output_dicts.append(self.forward_features(tx))
|
| 794 |
+
clipwise_output = torch.zeros_like(output_dicts[0]["clipwise_output"]).float().to(x.device)
|
| 795 |
+
framewise_output = torch.zeros_like(output_dicts[0]["framewise_output"]).float().to(x.device)
|
| 796 |
+
for d in output_dicts:
|
| 797 |
+
clipwise_output += d["clipwise_output"]
|
| 798 |
+
framewise_output += d["framewise_output"]
|
| 799 |
+
clipwise_output = clipwise_output / len(output_dicts)
|
| 800 |
+
framewise_output = framewise_output / len(output_dicts)
|
| 801 |
+
|
| 802 |
+
output_dict = {
|
| 803 |
+
'framewise_output': framewise_output,
|
| 804 |
+
'clipwise_output': clipwise_output
|
| 805 |
+
}
|
| 806 |
+
else:
|
| 807 |
+
if x.shape[2] > self.freq_ratio * self.spec_size:
|
| 808 |
+
if self.training:
|
| 809 |
+
x = self.crop_wav(x, crop_size=self.freq_ratio * self.spec_size)
|
| 810 |
+
x = self.reshape_wav2img(x)
|
| 811 |
+
output_dict = self.forward_features(x)
|
| 812 |
+
else:
|
| 813 |
+
# Change: Hard code here
|
| 814 |
+
overlap_size = (x.shape[2] - 1) // 4
|
| 815 |
+
output_dicts = []
|
| 816 |
+
crop_size = (x.shape[2] - 1) // 2
|
| 817 |
+
for cur_pos in range(0, x.shape[2] - crop_size - 1, overlap_size):
|
| 818 |
+
tx = self.crop_wav(x, crop_size = crop_size, spe_pos = cur_pos)
|
| 819 |
+
tx = self.reshape_wav2img(tx)
|
| 820 |
+
output_dicts.append(self.forward_features(tx))
|
| 821 |
+
clipwise_output = torch.zeros_like(output_dicts[0]["clipwise_output"]).float().to(x.device)
|
| 822 |
+
framewise_output = torch.zeros_like(output_dicts[0]["framewise_output"]).float().to(x.device)
|
| 823 |
+
for d in output_dicts:
|
| 824 |
+
clipwise_output += d["clipwise_output"]
|
| 825 |
+
framewise_output += d["framewise_output"]
|
| 826 |
+
clipwise_output = clipwise_output / len(output_dicts)
|
| 827 |
+
framewise_output = framewise_output / len(output_dicts)
|
| 828 |
+
output_dict = {
|
| 829 |
+
'framewise_output': framewise_output,
|
| 830 |
+
'clipwise_output': clipwise_output
|
| 831 |
+
}
|
| 832 |
+
else: # this part is typically used, and most easy one
|
| 833 |
+
x = self.reshape_wav2img(x)
|
| 834 |
+
output_dict = self.forward_features(x)
|
| 835 |
+
# x = self.head(x)
|
| 836 |
+
return output_dict
|
model/layers.py
ADDED
|
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Ke Chen
|
| 2 | |
| 3 |
+
# HTS-AT: A HIERARCHICAL TOKEN-SEMANTIC AUDIO TRANSFORMER FOR SOUND CLASSIFICATION AND DETECTION
|
| 4 |
+
# Some layers designed on the model
|
| 5 |
+
# below codes are based and referred from https://github.com/microsoft/Swin-Transformer
|
| 6 |
+
# Swin Transformer for Computer Vision: https://arxiv.org/pdf/2103.14030.pdf
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
import torch.nn as nn
|
| 10 |
+
import torch.nn.functional as F
|
| 11 |
+
from itertools import repeat
|
| 12 |
+
import collections.abc
|
| 13 |
+
import math
|
| 14 |
+
import warnings
|
| 15 |
+
|
| 16 |
+
from torch.nn.init import _calculate_fan_in_and_fan_out
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
# from PyTorch internals
|
| 20 |
+
def _ntuple(n):
|
| 21 |
+
def parse(x):
|
| 22 |
+
if isinstance(x, collections.abc.Iterable):
|
| 23 |
+
return x
|
| 24 |
+
return tuple(repeat(x, n))
|
| 25 |
+
return parse
|
| 26 |
+
|
| 27 |
+
to_1tuple = _ntuple(1)
|
| 28 |
+
to_2tuple = _ntuple(2)
|
| 29 |
+
to_3tuple = _ntuple(3)
|
| 30 |
+
to_4tuple = _ntuple(4)
|
| 31 |
+
to_ntuple = _ntuple
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
def drop_path(x, drop_prob: float = 0., training: bool = False):
|
| 35 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
| 36 |
+
This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
|
| 37 |
+
the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
| 38 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
|
| 39 |
+
changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
|
| 40 |
+
'survival rate' as the argument.
|
| 41 |
+
"""
|
| 42 |
+
if drop_prob == 0. or not training:
|
| 43 |
+
return x
|
| 44 |
+
keep_prob = 1 - drop_prob
|
| 45 |
+
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
| 46 |
+
random_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)
|
| 47 |
+
random_tensor.floor_() # binarize
|
| 48 |
+
output = x.div(keep_prob) * random_tensor
|
| 49 |
+
return output
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
class DropPath(nn.Module):
|
| 53 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
| 54 |
+
"""
|
| 55 |
+
def __init__(self, drop_prob=None):
|
| 56 |
+
super(DropPath, self).__init__()
|
| 57 |
+
self.drop_prob = drop_prob
|
| 58 |
+
|
| 59 |
+
def forward(self, x):
|
| 60 |
+
return drop_path(x, self.drop_prob, self.training)
|
| 61 |
+
|
| 62 |
+
class PatchEmbed(nn.Module):
|
| 63 |
+
""" 2D Image to Patch Embedding
|
| 64 |
+
"""
|
| 65 |
+
def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, norm_layer=None, flatten=True, patch_stride = 16):
|
| 66 |
+
super().__init__()
|
| 67 |
+
img_size = to_2tuple(img_size)
|
| 68 |
+
patch_size = to_2tuple(patch_size)
|
| 69 |
+
patch_stride = to_2tuple(patch_stride)
|
| 70 |
+
self.img_size = img_size
|
| 71 |
+
self.patch_size = patch_size
|
| 72 |
+
self.patch_stride = patch_stride
|
| 73 |
+
self.grid_size = (img_size[0] // patch_stride[0], img_size[1] // patch_stride[1])
|
| 74 |
+
self.num_patches = self.grid_size[0] * self.grid_size[1]
|
| 75 |
+
self.flatten = flatten
|
| 76 |
+
self.in_chans = in_chans
|
| 77 |
+
self.embed_dim = embed_dim
|
| 78 |
+
|
| 79 |
+
padding = ((patch_size[0] - patch_stride[0]) // 2, (patch_size[1] - patch_stride[1]) // 2)
|
| 80 |
+
|
| 81 |
+
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_stride, padding=padding)
|
| 82 |
+
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
|
| 83 |
+
|
| 84 |
+
def forward(self, x):
|
| 85 |
+
B, C, H, W = x.shape
|
| 86 |
+
assert H == self.img_size[0] and W == self.img_size[1], \
|
| 87 |
+
f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
|
| 88 |
+
x = self.proj(x)
|
| 89 |
+
if self.flatten:
|
| 90 |
+
x = x.flatten(2).transpose(1, 2) # BCHW -> BNC
|
| 91 |
+
x = self.norm(x)
|
| 92 |
+
return x
|
| 93 |
+
|
| 94 |
+
class Mlp(nn.Module):
|
| 95 |
+
""" MLP as used in Vision Transformer, MLP-Mixer and related networks
|
| 96 |
+
"""
|
| 97 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
| 98 |
+
super().__init__()
|
| 99 |
+
out_features = out_features or in_features
|
| 100 |
+
hidden_features = hidden_features or in_features
|
| 101 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
| 102 |
+
self.act = act_layer()
|
| 103 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
| 104 |
+
self.drop = nn.Dropout(drop)
|
| 105 |
+
|
| 106 |
+
def forward(self, x):
|
| 107 |
+
x = self.fc1(x)
|
| 108 |
+
x = self.act(x)
|
| 109 |
+
x = self.drop(x)
|
| 110 |
+
x = self.fc2(x)
|
| 111 |
+
x = self.drop(x)
|
| 112 |
+
return x
|
| 113 |
+
|
| 114 |
+
def _no_grad_trunc_normal_(tensor, mean, std, a, b):
|
| 115 |
+
# Cut & paste from PyTorch official master until it's in a few official releases - RW
|
| 116 |
+
# Method based on https://people.sc.fsu.edu/~jburkardt/presentations/truncated_normal.pdf
|
| 117 |
+
def norm_cdf(x):
|
| 118 |
+
# Computes standard normal cumulative distribution function
|
| 119 |
+
return (1. + math.erf(x / math.sqrt(2.))) / 2.
|
| 120 |
+
|
| 121 |
+
if (mean < a - 2 * std) or (mean > b + 2 * std):
|
| 122 |
+
warnings.warn("mean is more than 2 std from [a, b] in nn.init.trunc_normal_. "
|
| 123 |
+
"The distribution of values may be incorrect.",
|
| 124 |
+
stacklevel=2)
|
| 125 |
+
|
| 126 |
+
with torch.no_grad():
|
| 127 |
+
# Values are generated by using a truncated uniform distribution and
|
| 128 |
+
# then using the inverse CDF for the normal distribution.
|
| 129 |
+
# Get upper and lower cdf values
|
| 130 |
+
l = norm_cdf((a - mean) / std)
|
| 131 |
+
u = norm_cdf((b - mean) / std)
|
| 132 |
+
|
| 133 |
+
# Uniformly fill tensor with values from [l, u], then translate to
|
| 134 |
+
# [2l-1, 2u-1].
|
| 135 |
+
tensor.uniform_(2 * l - 1, 2 * u - 1)
|
| 136 |
+
|
| 137 |
+
# Use inverse cdf transform for normal distribution to get truncated
|
| 138 |
+
# standard normal
|
| 139 |
+
tensor.erfinv_()
|
| 140 |
+
|
| 141 |
+
# Transform to proper mean, std
|
| 142 |
+
tensor.mul_(std * math.sqrt(2.))
|
| 143 |
+
tensor.add_(mean)
|
| 144 |
+
|
| 145 |
+
# Clamp to ensure it's in the proper range
|
| 146 |
+
tensor.clamp_(min=a, max=b)
|
| 147 |
+
return tensor
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
def trunc_normal_(tensor, mean=0., std=1., a=-2., b=2.):
|
| 151 |
+
# type: (Tensor, float, float, float, float) -> Tensor
|
| 152 |
+
r"""Fills the input Tensor with values drawn from a truncated
|
| 153 |
+
normal distribution. The values are effectively drawn from the
|
| 154 |
+
normal distribution :math:`\mathcal{N}(\text{mean}, \text{std}^2)`
|
| 155 |
+
with values outside :math:`[a, b]` redrawn until they are within
|
| 156 |
+
the bounds. The method used for generating the random values works
|
| 157 |
+
best when :math:`a \leq \text{mean} \leq b`.
|
| 158 |
+
Args:
|
| 159 |
+
tensor: an n-dimensional `torch.Tensor`
|
| 160 |
+
mean: the mean of the normal distribution
|
| 161 |
+
std: the standard deviation of the normal distribution
|
| 162 |
+
a: the minimum cutoff value
|
| 163 |
+
b: the maximum cutoff value
|
| 164 |
+
Examples:
|
| 165 |
+
>>> w = torch.empty(3, 5)
|
| 166 |
+
>>> nn.init.trunc_normal_(w)
|
| 167 |
+
"""
|
| 168 |
+
return _no_grad_trunc_normal_(tensor, mean, std, a, b)
|
| 169 |
+
|
| 170 |
+
|
| 171 |
+
def variance_scaling_(tensor, scale=1.0, mode='fan_in', distribution='normal'):
|
| 172 |
+
fan_in, fan_out = _calculate_fan_in_and_fan_out(tensor)
|
| 173 |
+
if mode == 'fan_in':
|
| 174 |
+
denom = fan_in
|
| 175 |
+
elif mode == 'fan_out':
|
| 176 |
+
denom = fan_out
|
| 177 |
+
elif mode == 'fan_avg':
|
| 178 |
+
denom = (fan_in + fan_out) / 2
|
| 179 |
+
|
| 180 |
+
variance = scale / denom
|
| 181 |
+
|
| 182 |
+
if distribution == "truncated_normal":
|
| 183 |
+
# constant is stddev of standard normal truncated to (-2, 2)
|
| 184 |
+
trunc_normal_(tensor, std=math.sqrt(variance) / .87962566103423978)
|
| 185 |
+
elif distribution == "normal":
|
| 186 |
+
tensor.normal_(std=math.sqrt(variance))
|
| 187 |
+
elif distribution == "uniform":
|
| 188 |
+
bound = math.sqrt(3 * variance)
|
| 189 |
+
tensor.uniform_(-bound, bound)
|
| 190 |
+
else:
|
| 191 |
+
raise ValueError(f"invalid distribution {distribution}")
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
def lecun_normal_(tensor):
|
| 195 |
+
variance_scaling_(tensor, mode='fan_in', distribution='truncated_normal')
|
requirements.txt
ADDED
|
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
h5py==3.6.0
|
| 2 |
+
librosa==0.8.1
|
| 3 |
+
matplotlib==3.5.1
|
| 4 |
+
museval==0.4.0
|
| 5 |
+
numpy==1.22.0
|
| 6 |
+
pandas==1.4.0
|
| 7 |
+
pytorch_lightning==1.5.9
|
| 8 |
+
scikit_learn==1.0.2
|
| 9 |
+
scipy==1.7.3
|
| 10 |
+
soundfile==0.10.3.post1
|
| 11 |
+
tensorboard==2.8.0
|
| 12 |
+
torch==1.10.2
|
| 13 |
+
torchaudio==0.10.2
|
| 14 |
+
torchcontrib==0.0.2
|
| 15 |
+
torchlibrosa==0.0.9
|
| 16 |
+
tqdm==4.62.3
|
| 17 |
+
|
| 18 |
+
gradio
|
saved_training/HTSAT_ESC_exp=1_fold=1_acc=0.985.ckpt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:02478f008fad5c0fa6cff856c729f1f22deb73c8e254c652785371355c27ce0f
|
| 3 |
+
size 339619927
|
sed_model.py
ADDED
|
@@ -0,0 +1,357 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Ke Chen
|
| 2 | |
| 3 |
+
# HTS-AT: A HIERARCHICAL TOKEN-SEMANTIC AUDIO TRANSFORMER FOR SOUND CLASSIFICATION AND DETECTION
|
| 4 |
+
# The Model Training Wrapper
|
| 5 |
+
import numpy as np
|
| 6 |
+
import librosa
|
| 7 |
+
import os
|
| 8 |
+
import bisect
|
| 9 |
+
from numpy.lib.function_base import average
|
| 10 |
+
|
| 11 |
+
from sklearn.metrics import average_precision_score, roc_auc_score, accuracy_score
|
| 12 |
+
|
| 13 |
+
from utils import get_loss_func, get_mix_lambda, d_prime
|
| 14 |
+
import torch
|
| 15 |
+
import torch.nn as nn
|
| 16 |
+
import torch.nn.functional as F
|
| 17 |
+
import torch.utils.checkpoint as cp
|
| 18 |
+
import torch.optim as optim
|
| 19 |
+
from torch.nn.parameter import Parameter
|
| 20 |
+
import torch.distributed as dist
|
| 21 |
+
import pytorch_lightning as pl
|
| 22 |
+
from utils import do_mixup, get_mix_lambda, do_mixup_label
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
class SEDWrapper(pl.LightningModule):
|
| 26 |
+
def __init__(self, sed_model, config, dataset):
|
| 27 |
+
super().__init__()
|
| 28 |
+
self.sed_model = sed_model
|
| 29 |
+
self.config = config
|
| 30 |
+
self.dataset = dataset
|
| 31 |
+
self.loss_func = get_loss_func(config.loss_type)
|
| 32 |
+
|
| 33 |
+
def evaluate_metric(self, pred, ans):
|
| 34 |
+
ap = []
|
| 35 |
+
if self.config.dataset_type == "audioset":
|
| 36 |
+
mAP = np.mean(average_precision_score(ans, pred, average = None))
|
| 37 |
+
mAUC = np.mean(roc_auc_score(ans, pred, average = None))
|
| 38 |
+
dprime = d_prime(mAUC)
|
| 39 |
+
return {"mAP": mAP, "mAUC": mAUC, "dprime": dprime}
|
| 40 |
+
else:
|
| 41 |
+
acc = accuracy_score(ans, np.argmax(pred, 1))
|
| 42 |
+
return {"acc": acc}
|
| 43 |
+
def forward(self, x, mix_lambda = None):
|
| 44 |
+
output_dict = self.sed_model(x, mix_lambda)
|
| 45 |
+
return output_dict["clipwise_output"], output_dict["framewise_output"]
|
| 46 |
+
|
| 47 |
+
def inference(self, x):
|
| 48 |
+
self.device_type = next(self.parameters()).device
|
| 49 |
+
self.eval()
|
| 50 |
+
x = torch.from_numpy(x).float().to(self.device_type)
|
| 51 |
+
print(x.shape)
|
| 52 |
+
output_dict = self.sed_model(x, None, True)
|
| 53 |
+
for key in output_dict.keys():
|
| 54 |
+
output_dict[key] = output_dict[key].detach().cpu().numpy()
|
| 55 |
+
return output_dict
|
| 56 |
+
|
| 57 |
+
def training_step(self, batch, batch_idx):
|
| 58 |
+
self.device_type = next(self.parameters()).device
|
| 59 |
+
mix_lambda = torch.from_numpy(get_mix_lambda(0.5, len(batch["waveform"]))).to(self.device_type)
|
| 60 |
+
# Another Choice: also mixup the target, but AudioSet is not a perfect data
|
| 61 |
+
# so "adding noise" might be better than purly "mix"
|
| 62 |
+
# batch["target"] = do_mixup_label(batch["target"])
|
| 63 |
+
# batch["target"] = do_mixup(batch["target"], mix_lambda)
|
| 64 |
+
pred, _ = self(batch["waveform"], mix_lambda)
|
| 65 |
+
loss = self.loss_func(pred, batch["target"])
|
| 66 |
+
self.log("loss", loss, on_epoch= True, prog_bar=True)
|
| 67 |
+
return loss
|
| 68 |
+
def training_epoch_end(self, outputs):
|
| 69 |
+
# Change: SWA, deprecated
|
| 70 |
+
# for opt in self.trainer.optimizers:
|
| 71 |
+
# if not type(opt) is SWA:
|
| 72 |
+
# continue
|
| 73 |
+
# opt.swap_swa_sgd()
|
| 74 |
+
self.dataset.generate_queue()
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
def validation_step(self, batch, batch_idx):
|
| 78 |
+
pred, _ = self(batch["waveform"])
|
| 79 |
+
return [pred.detach(), batch["target"].detach()]
|
| 80 |
+
|
| 81 |
+
def validation_epoch_end(self, validation_step_outputs):
|
| 82 |
+
self.device_type = next(self.parameters()).device
|
| 83 |
+
pred = torch.cat([d[0] for d in validation_step_outputs], dim = 0)
|
| 84 |
+
target = torch.cat([d[1] for d in validation_step_outputs], dim = 0)
|
| 85 |
+
gather_pred = [torch.zeros_like(pred) for _ in range(dist.get_world_size())]
|
| 86 |
+
gather_target = [torch.zeros_like(target) for _ in range(dist.get_world_size())]
|
| 87 |
+
dist.barrier()
|
| 88 |
+
if self.config.dataset_type == "audioset":
|
| 89 |
+
metric_dict = {
|
| 90 |
+
"mAP": 0.,
|
| 91 |
+
"mAUC": 0.,
|
| 92 |
+
"dprime": 0.
|
| 93 |
+
}
|
| 94 |
+
else:
|
| 95 |
+
metric_dict = {
|
| 96 |
+
"acc":0.
|
| 97 |
+
}
|
| 98 |
+
dist.all_gather(gather_pred, pred)
|
| 99 |
+
dist.all_gather(gather_target, target)
|
| 100 |
+
if dist.get_rank() == 0:
|
| 101 |
+
gather_pred = torch.cat(gather_pred, dim = 0).cpu().numpy()
|
| 102 |
+
gather_target = torch.cat(gather_target, dim = 0).cpu().numpy()
|
| 103 |
+
if self.config.dataset_type == "scv2":
|
| 104 |
+
gather_target = np.argmax(gather_target, 1)
|
| 105 |
+
metric_dict = self.evaluate_metric(gather_pred, gather_target)
|
| 106 |
+
print(self.device_type, dist.get_world_size(), metric_dict, flush = True)
|
| 107 |
+
|
| 108 |
+
if self.config.dataset_type == "audioset":
|
| 109 |
+
self.log("mAP", metric_dict["mAP"] * float(dist.get_world_size()), on_epoch = True, prog_bar=True, sync_dist=True)
|
| 110 |
+
self.log("mAUC", metric_dict["mAUC"] * float(dist.get_world_size()), on_epoch = True, prog_bar=True, sync_dist=True)
|
| 111 |
+
self.log("dprime", metric_dict["dprime"] * float(dist.get_world_size()), on_epoch = True, prog_bar=True, sync_dist=True)
|
| 112 |
+
else:
|
| 113 |
+
self.log("acc", metric_dict["acc"] * float(dist.get_world_size()), on_epoch = True, prog_bar=True, sync_dist=True)
|
| 114 |
+
dist.barrier()
|
| 115 |
+
|
| 116 |
+
def time_shifting(self, x, shift_len):
|
| 117 |
+
shift_len = int(shift_len)
|
| 118 |
+
new_sample = torch.cat([x[:, shift_len:], x[:, :shift_len]], axis = 1)
|
| 119 |
+
return new_sample
|
| 120 |
+
|
| 121 |
+
def test_step(self, batch, batch_idx):
|
| 122 |
+
print(batch['waveform'].shape)
|
| 123 |
+
exit()
|
| 124 |
+
self.device_type = next(self.parameters()).device
|
| 125 |
+
preds = []
|
| 126 |
+
# time shifting optimization
|
| 127 |
+
if self.config.fl_local or self.config.dataset_type != "audioset":
|
| 128 |
+
shift_num = 1 # framewise localization cannot allow the time shifting
|
| 129 |
+
else:
|
| 130 |
+
shift_num = 10
|
| 131 |
+
for i in range(shift_num):
|
| 132 |
+
pred, pred_map = self(batch["waveform"])
|
| 133 |
+
preds.append(pred.unsqueeze(0))
|
| 134 |
+
batch["waveform"] = self.time_shifting(batch["waveform"], shift_len = 100 * (i + 1))
|
| 135 |
+
preds = torch.cat(preds, dim=0)
|
| 136 |
+
pred = preds.mean(dim = 0)
|
| 137 |
+
if self.config.fl_local:
|
| 138 |
+
return [
|
| 139 |
+
pred.detach().cpu().numpy(),
|
| 140 |
+
pred_map.detach().cpu().numpy(),
|
| 141 |
+
batch["audio_name"],
|
| 142 |
+
batch["real_len"].cpu().numpy()
|
| 143 |
+
]
|
| 144 |
+
else:
|
| 145 |
+
return [pred.detach(), batch["target"].detach()]
|
| 146 |
+
|
| 147 |
+
def test_epoch_end(self, test_step_outputs):
|
| 148 |
+
self.device_type = next(self.parameters()).device
|
| 149 |
+
if self.config.fl_local:
|
| 150 |
+
pred = np.concatenate([d[0] for d in test_step_outputs], axis = 0)
|
| 151 |
+
pred_map = np.concatenate([d[1] for d in test_step_outputs], axis = 0)
|
| 152 |
+
audio_name = np.concatenate([d[2] for d in test_step_outputs], axis = 0)
|
| 153 |
+
real_len = np.concatenate([d[3] for d in test_step_outputs], axis = 0)
|
| 154 |
+
heatmap_file = os.path.join(self.config.heatmap_dir, self.config.test_file + "_" + str(self.device_type) + ".npy")
|
| 155 |
+
save_npy = [
|
| 156 |
+
{
|
| 157 |
+
"audio_name": audio_name[i],
|
| 158 |
+
"heatmap": pred_map[i],
|
| 159 |
+
"pred": pred[i],
|
| 160 |
+
"real_len":real_len[i]
|
| 161 |
+
}
|
| 162 |
+
for i in range(len(pred))
|
| 163 |
+
]
|
| 164 |
+
np.save(heatmap_file, save_npy)
|
| 165 |
+
else:
|
| 166 |
+
self.device_type = next(self.parameters()).device
|
| 167 |
+
pred = torch.cat([d[0] for d in test_step_outputs], dim = 0)
|
| 168 |
+
target = torch.cat([d[1] for d in test_step_outputs], dim = 0)
|
| 169 |
+
gather_pred = [torch.zeros_like(pred) for _ in range(dist.get_world_size())]
|
| 170 |
+
gather_target = [torch.zeros_like(target) for _ in range(dist.get_world_size())]
|
| 171 |
+
dist.barrier()
|
| 172 |
+
if self.config.dataset_type == "audioset":
|
| 173 |
+
metric_dict = {
|
| 174 |
+
"mAP": 0.,
|
| 175 |
+
"mAUC": 0.,
|
| 176 |
+
"dprime": 0.
|
| 177 |
+
}
|
| 178 |
+
else:
|
| 179 |
+
metric_dict = {
|
| 180 |
+
"acc":0.
|
| 181 |
+
}
|
| 182 |
+
dist.all_gather(gather_pred, pred)
|
| 183 |
+
dist.all_gather(gather_target, target)
|
| 184 |
+
if dist.get_rank() == 0:
|
| 185 |
+
gather_pred = torch.cat(gather_pred, dim = 0).cpu().numpy()
|
| 186 |
+
gather_target = torch.cat(gather_target, dim = 0).cpu().numpy()
|
| 187 |
+
if self.config.dataset_type == "scv2":
|
| 188 |
+
gather_target = np.argmax(gather_target, 1)
|
| 189 |
+
metric_dict = self.evaluate_metric(gather_pred, gather_target)
|
| 190 |
+
print(self.device_type, dist.get_world_size(), metric_dict, flush = True)
|
| 191 |
+
if self.config.dataset_type == "audioset":
|
| 192 |
+
self.log("mAP", metric_dict["mAP"] * float(dist.get_world_size()), on_epoch = True, prog_bar=True, sync_dist=True)
|
| 193 |
+
self.log("mAUC", metric_dict["mAUC"] * float(dist.get_world_size()), on_epoch = True, prog_bar=True, sync_dist=True)
|
| 194 |
+
self.log("dprime", metric_dict["dprime"] * float(dist.get_world_size()), on_epoch = True, prog_bar=True, sync_dist=True)
|
| 195 |
+
else:
|
| 196 |
+
self.log("acc", metric_dict["acc"] * float(dist.get_world_size()), on_epoch = True, prog_bar=True, sync_dist=True)
|
| 197 |
+
dist.barrier()
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
def configure_optimizers(self):
|
| 201 |
+
optimizer = optim.AdamW(
|
| 202 |
+
filter(lambda p: p.requires_grad, self.parameters()),
|
| 203 |
+
lr = self.config.learning_rate,
|
| 204 |
+
betas = (0.9, 0.999), eps = 1e-08, weight_decay = 0.05,
|
| 205 |
+
)
|
| 206 |
+
# Change: SWA, deprecated
|
| 207 |
+
# optimizer = SWA(optimizer, swa_start=10, swa_freq=5)
|
| 208 |
+
def lr_foo(epoch):
|
| 209 |
+
if epoch < 3:
|
| 210 |
+
# warm up lr
|
| 211 |
+
lr_scale = self.config.lr_rate[epoch]
|
| 212 |
+
else:
|
| 213 |
+
# warmup schedule
|
| 214 |
+
lr_pos = int(-1 - bisect.bisect_left(self.config.lr_scheduler_epoch, epoch))
|
| 215 |
+
if lr_pos < -3:
|
| 216 |
+
lr_scale = max(self.config.lr_rate[0] * (0.98 ** epoch), 0.03 )
|
| 217 |
+
else:
|
| 218 |
+
lr_scale = self.config.lr_rate[lr_pos]
|
| 219 |
+
return lr_scale
|
| 220 |
+
scheduler = optim.lr_scheduler.LambdaLR(
|
| 221 |
+
optimizer,
|
| 222 |
+
lr_lambda=lr_foo
|
| 223 |
+
)
|
| 224 |
+
|
| 225 |
+
return [optimizer], [scheduler]
|
| 226 |
+
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
class Ensemble_SEDWrapper(pl.LightningModule):
|
| 230 |
+
def __init__(self, sed_models, config, dataset):
|
| 231 |
+
super().__init__()
|
| 232 |
+
|
| 233 |
+
self.sed_models = nn.ModuleList(sed_models)
|
| 234 |
+
self.config = config
|
| 235 |
+
self.dataset = dataset
|
| 236 |
+
|
| 237 |
+
def evaluate_metric(self, pred, ans):
|
| 238 |
+
if self.config.dataset_type == "audioset":
|
| 239 |
+
mAP = np.mean(average_precision_score(ans, pred, average = None))
|
| 240 |
+
mAUC = np.mean(roc_auc_score(ans, pred, average = None))
|
| 241 |
+
dprime = d_prime(mAUC)
|
| 242 |
+
return {"mAP": mAP, "mAUC": mAUC, "dprime": dprime}
|
| 243 |
+
else:
|
| 244 |
+
acc = accuracy_score(ans, np.argmax(pred, 1))
|
| 245 |
+
return {"acc": acc}
|
| 246 |
+
|
| 247 |
+
def forward(self, x, sed_index, mix_lambda = None):
|
| 248 |
+
self.sed_models[sed_index].eval()
|
| 249 |
+
preds = []
|
| 250 |
+
pred_maps = []
|
| 251 |
+
# time shifting optimization
|
| 252 |
+
if self.config.fl_local or self.config.dataset_type != "audioset":
|
| 253 |
+
shift_num = 1 # framewise localization cannot allow the time shifting
|
| 254 |
+
else:
|
| 255 |
+
shift_num = 10
|
| 256 |
+
for i in range(shift_num):
|
| 257 |
+
pred, pred_map = self.sed_models[sed_index](x)
|
| 258 |
+
pred_maps.append(pred_map.unsqueeze(0))
|
| 259 |
+
preds.append(pred.unsqueeze(0))
|
| 260 |
+
x = self.time_shifting(x, shift_len = 100 * (i + 1))
|
| 261 |
+
preds = torch.cat(preds, dim=0)
|
| 262 |
+
pred_maps = torch.cat(pred_maps, dim = 0)
|
| 263 |
+
pred = preds.mean(dim = 0)
|
| 264 |
+
pred_map = pred_maps.mean(dim = 0)
|
| 265 |
+
return pred, pred_map
|
| 266 |
+
|
| 267 |
+
|
| 268 |
+
def time_shifting(self, x, shift_len):
|
| 269 |
+
shift_len = int(shift_len)
|
| 270 |
+
new_sample = torch.cat([x[:, shift_len:], x[:, :shift_len]], axis = 1)
|
| 271 |
+
return new_sample
|
| 272 |
+
|
| 273 |
+
def test_step(self, batch, batch_idx):
|
| 274 |
+
self.device_type = next(self.parameters()).device
|
| 275 |
+
if self.config.fl_local:
|
| 276 |
+
pred = torch.zeros(len(batch["waveform"]), self.config.classes_num).float().to(self.device_type)
|
| 277 |
+
pred_map = torch.zeros(len(batch["waveform"]), 1024, self.config.classes_num).float().to(self.device_type)
|
| 278 |
+
for j in range(len(self.sed_models)):
|
| 279 |
+
temp_pred, temp_pred_map = self(batch["waveform"], j)
|
| 280 |
+
pred = pred + temp_pred
|
| 281 |
+
pred_map = pred_map + temp_pred_map
|
| 282 |
+
pred = pred / len(self.sed_models)
|
| 283 |
+
pred_map = pred_map / len(self.sed_models)
|
| 284 |
+
return [
|
| 285 |
+
pred.detach().cpu().numpy(),
|
| 286 |
+
pred_map.detach().cpu().numpy(),
|
| 287 |
+
batch["audio_name"],
|
| 288 |
+
batch["real_len"].cpu().numpy()
|
| 289 |
+
]
|
| 290 |
+
else:
|
| 291 |
+
pred = torch.zeros(len(batch["waveform"]), self.config.classes_num).float().to(self.device_type)
|
| 292 |
+
for j in range(len(self.sed_models)):
|
| 293 |
+
temp_pred, _ = self(batch["waveform"], j)
|
| 294 |
+
pred = pred + temp_pred
|
| 295 |
+
pred = pred / len(self.sed_models)
|
| 296 |
+
return [
|
| 297 |
+
pred.detach(),
|
| 298 |
+
batch["target"].detach(),
|
| 299 |
+
]
|
| 300 |
+
|
| 301 |
+
def test_epoch_end(self, test_step_outputs):
|
| 302 |
+
self.device_type = next(self.parameters()).device
|
| 303 |
+
if self.config.fl_local:
|
| 304 |
+
pred = np.concatenate([d[0] for d in test_step_outputs], axis = 0)
|
| 305 |
+
pred_map = np.concatenate([d[1] for d in test_step_outputs], axis = 0)
|
| 306 |
+
audio_name = np.concatenate([d[2] for d in test_step_outputs], axis = 0)
|
| 307 |
+
real_len = np.concatenate([d[3] for d in test_step_outputs], axis = 0)
|
| 308 |
+
heatmap_file = os.path.join(self.config.heatmap_dir, self.config.test_file + "_" + str(self.device_type) + ".npy")
|
| 309 |
+
print(pred.shape)
|
| 310 |
+
print(pred_map.shape)
|
| 311 |
+
print(real_len.shape)
|
| 312 |
+
save_npy = [
|
| 313 |
+
{
|
| 314 |
+
"audio_name": audio_name[i],
|
| 315 |
+
"heatmap": pred_map[i],
|
| 316 |
+
"pred": pred[i],
|
| 317 |
+
"real_len":real_len[i]
|
| 318 |
+
}
|
| 319 |
+
for i in range(len(pred))
|
| 320 |
+
]
|
| 321 |
+
np.save(heatmap_file, save_npy)
|
| 322 |
+
else:
|
| 323 |
+
pred = torch.cat([d[0] for d in test_step_outputs], dim = 0)
|
| 324 |
+
target = torch.cat([d[1] for d in test_step_outputs], dim = 0)
|
| 325 |
+
gather_pred = [torch.zeros_like(pred) for _ in range(dist.get_world_size())]
|
| 326 |
+
gather_target = [torch.zeros_like(target) for _ in range(dist.get_world_size())]
|
| 327 |
+
|
| 328 |
+
dist.barrier()
|
| 329 |
+
if self.config.dataset_type == "audioset":
|
| 330 |
+
metric_dict = {
|
| 331 |
+
"mAP": 0.,
|
| 332 |
+
"mAUC": 0.,
|
| 333 |
+
"dprime": 0.
|
| 334 |
+
}
|
| 335 |
+
else:
|
| 336 |
+
metric_dict = {
|
| 337 |
+
"acc":0.
|
| 338 |
+
}
|
| 339 |
+
dist.all_gather(gather_pred, pred)
|
| 340 |
+
dist.all_gather(gather_target, target)
|
| 341 |
+
if dist.get_rank() == 0:
|
| 342 |
+
gather_pred = torch.cat(gather_pred, dim = 0).cpu().numpy()
|
| 343 |
+
gather_target = torch.cat(gather_target, dim = 0).cpu().numpy()
|
| 344 |
+
if self.config.dataset_type == "scv2":
|
| 345 |
+
gather_target = np.argmax(gather_target, 1)
|
| 346 |
+
metric_dict = self.evaluate_metric(gather_pred, gather_target)
|
| 347 |
+
print(self.device_type, dist.get_world_size(), metric_dict, flush = True)
|
| 348 |
+
if self.config.dataset_type == "audioset":
|
| 349 |
+
self.log("mAP", metric_dict["mAP"] * float(dist.get_world_size()), on_epoch = True, prog_bar=True, sync_dist=True)
|
| 350 |
+
self.log("mAUC", metric_dict["mAUC"] * float(dist.get_world_size()), on_epoch = True, prog_bar=True, sync_dist=True)
|
| 351 |
+
self.log("dprime", metric_dict["dprime"] * float(dist.get_world_size()), on_epoch = True, prog_bar=True, sync_dist=True)
|
| 352 |
+
else:
|
| 353 |
+
self.log("acc", metric_dict["acc"] * float(dist.get_world_size()), on_epoch = True, prog_bar=True, sync_dist=True)
|
| 354 |
+
dist.barrier()
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
|