import streamlit as st import torch import torch.nn as nn import torch.optim as optim from PIL import Image import numpy as np # GAN model architecture class Generator(nn.Module): def __init__(self): super(Generator, self).__init__() # TO DO: implement generator architecture def forward(self, z): # TO DO: implement generator forward pass pass class Discriminator(nn.Module): def __init__(self): super(Discriminator, self).__init__() # TO DO: implement discriminator architecture def forward(self, x): # TO DO: implement discriminator forward pass pass # Floorplan generator model architecture class FloorplanGenerator(nn.Module): def __init__(self): super(FloorplanGenerator, self).__init__() # TO DO: implement floorplan generator architecture def forward(self, img): # TO DO: implement floorplan generator forward pass pass # Load pre-trained models @st.cache def load_models(): generator = Generator() discriminator = Discriminator() floorplan_generator = FloorplanGenerator() # TO DO: load pre-trained model weights return generator, discriminator, floorplan_generator # Streamlit app st.title("GAN Image Generation and Floorplan App") # Load models generator, discriminator, floorplan_generator = load_models() # Image generation st.header("Image Generation") z_dim = 100 noise = torch.randn(1, z_dim) generated_img = generator(noise) st.image(generated_img, caption="Generated Image") # Floorplan generation st.header("Floorplan Generation") img_file = st.file_uploader("Upload an image", type=["png", "jpg", "jpeg"]) if img_file: img = Image.open(img_file) img = np.array(img) / 255.0 floorplan = floorplan_generator(torch.tensor(img)) st.image(floorplan, caption="Generated Floorplan") # Run the app if __name__ == "__main__": st.write("App is running!")