chore: update
Browse files
app.py
CHANGED
|
@@ -1,13 +1,14 @@
|
|
| 1 |
import os
|
| 2 |
import shutil
|
| 3 |
import subprocess
|
|
|
|
| 4 |
from pathlib import Path
|
| 5 |
-
from time import time
|
| 6 |
from typing import List, Tuple, Union
|
| 7 |
|
| 8 |
import gradio as gr
|
| 9 |
import numpy as np
|
| 10 |
import pandas as pd
|
|
|
|
| 11 |
from preprocessing import pretty_print
|
| 12 |
from symptoms_categories import SYMPTOMS_LIST
|
| 13 |
|
|
@@ -16,16 +17,21 @@ from concrete.ml.deployment import FHEModelClient, FHEModelDev, FHEModelServer
|
|
| 16 |
from concrete.ml.sklearn import XGBClassifier as ConcreteXGBoostClassifier
|
| 17 |
|
| 18 |
INPUT_BROWSER_LIMIT = 635
|
| 19 |
-
|
| 20 |
# This repository's main necessary folders
|
| 21 |
REPO_DIR = Path(__file__).parent
|
| 22 |
MODEL_PATH = REPO_DIR / "client_folder"
|
| 23 |
KEYS_PATH = REPO_DIR / ".fhe_keys"
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
|
| 30 |
|
| 31 |
def clean_directory():
|
|
@@ -169,8 +175,8 @@ def key_gen_fn(user_symptoms):
|
|
| 169 |
|
| 170 |
# np.save(f".fhe_keys/{user_id}/eval_key.npy", serialized_evaluation_keys)
|
| 171 |
evaluation_key_path = KEYS_PATH / f"{user_id}/evaluation_key"
|
| 172 |
-
with evaluation_key_path.open("wb") as
|
| 173 |
-
|
| 174 |
|
| 175 |
serialized_evaluation_keys_shorten_hex = serialized_evaluation_keys.hex()[:INPUT_BROWSER_LIMIT]
|
| 176 |
|
|
@@ -200,7 +206,7 @@ def encrypt_fn(user_symptoms, user_id):
|
|
| 200 |
|
| 201 |
quant_user_symptoms = client.model.quantize_input(user_symptoms)
|
| 202 |
encrypted_quantized_user_symptoms = client.quantize_encrypt_serialize(user_symptoms)
|
| 203 |
-
|
| 204 |
encrypted_input_path = KEYS_PATH / f"{user_id}/encrypted_symptoms"
|
| 205 |
|
| 206 |
with encrypted_input_path.open("wb") as f:
|
|
@@ -227,46 +233,69 @@ def encrypt_fn(user_symptoms, user_id):
|
|
| 227 |
}
|
| 228 |
|
| 229 |
|
| 230 |
-
|
| 231 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 232 |
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
# filter_name (str): The current filter to consider.
|
| 236 |
-
# """
|
| 237 |
-
# # Get the evaluation key path
|
| 238 |
|
|
|
|
|
|
|
| 239 |
|
| 240 |
-
|
|
|
|
|
|
|
| 241 |
|
| 242 |
-
|
| 243 |
-
|
| 244 |
|
| 245 |
-
|
| 246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
|
| 248 |
-
#
|
| 249 |
-
|
|
|
|
|
|
|
|
|
|
| 250 |
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
# }
|
| 256 |
|
| 257 |
-
#
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
|
| 262 |
-
|
| 263 |
-
# url = SERVER_URL + "send_input"
|
| 264 |
-
# with requests.post(
|
| 265 |
-
# url=url,
|
| 266 |
-
# data=data,
|
| 267 |
-
# files=files,
|
| 268 |
-
# ) as response:
|
| 269 |
-
# return response.ok
|
| 270 |
|
| 271 |
|
| 272 |
# def decrypt_prediction(encrypted_quantized_vect, user_id):
|
|
@@ -277,11 +306,13 @@ def encrypt_fn(user_symptoms, user_id):
|
|
| 277 |
# return predictions
|
| 278 |
|
| 279 |
|
|
|
|
| 280 |
|
|
|
|
| 281 |
|
| 282 |
-
def clear_all_btn():
|
| 283 |
return {
|
| 284 |
box_default: None,
|
|
|
|
| 285 |
user_id_textbox: None,
|
| 286 |
eval_key_textbox: None,
|
| 287 |
quant_vect_textbox: None,
|
|
@@ -291,13 +322,14 @@ def clear_all_btn():
|
|
| 291 |
error_box_1: gr.update(visible=False),
|
| 292 |
error_box_2: gr.update(visible=False),
|
| 293 |
error_box_3: gr.update(visible=False),
|
|
|
|
|
|
|
| 294 |
**{box: None for box in check_boxes},
|
| 295 |
}
|
| 296 |
|
| 297 |
|
| 298 |
if __name__ == "__main__":
|
| 299 |
print("Starting demo ...")
|
| 300 |
-
|
| 301 |
|
| 302 |
(df_train, X_train, X_test), (df_test, y_train, y_test) = load_data()
|
| 303 |
|
|
@@ -423,7 +455,7 @@ if __name__ == "__main__":
|
|
| 423 |
gr.Markdown("# Step 3: Encode the message with the private key")
|
| 424 |
gr.Markdown("Client side")
|
| 425 |
|
| 426 |
-
encrypt_btn = gr.Button("Encode the message with the private key
|
| 427 |
|
| 428 |
error_box_3 = gr.Textbox(label="Error", visible=False)
|
| 429 |
|
|
@@ -452,12 +484,25 @@ if __name__ == "__main__":
|
|
| 452 |
outputs=[vect_textbox, quant_vect_textbox, encrypted_vect_textbox, error_box_3],
|
| 453 |
)
|
| 454 |
|
| 455 |
-
gr.Markdown("# Step 4:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 456 |
gr.Markdown("Server side")
|
| 457 |
|
| 458 |
run_fhe = gr.Button("Run the FHE evaluation")
|
| 459 |
|
| 460 |
-
gr.Markdown("# Step
|
| 461 |
gr.Markdown("Server side")
|
| 462 |
|
| 463 |
decrypt_target_botton = gr.Button("Decrypt the sentiment")
|
|
@@ -478,10 +523,13 @@ if __name__ == "__main__":
|
|
| 478 |
error_box_1,
|
| 479 |
error_box_2,
|
| 480 |
error_box_3,
|
|
|
|
|
|
|
| 481 |
user_id_textbox,
|
| 482 |
eval_key_textbox,
|
| 483 |
quant_vect_textbox,
|
| 484 |
user_vector_textbox,
|
|
|
|
| 485 |
eval_key_len_textbox,
|
| 486 |
encrypted_vect_textbox,
|
| 487 |
*check_boxes,
|
|
|
|
| 1 |
import os
|
| 2 |
import shutil
|
| 3 |
import subprocess
|
| 4 |
+
import time
|
| 5 |
from pathlib import Path
|
|
|
|
| 6 |
from typing import List, Tuple, Union
|
| 7 |
|
| 8 |
import gradio as gr
|
| 9 |
import numpy as np
|
| 10 |
import pandas as pd
|
| 11 |
+
import requests
|
| 12 |
from preprocessing import pretty_print
|
| 13 |
from symptoms_categories import SYMPTOMS_LIST
|
| 14 |
|
|
|
|
| 17 |
from concrete.ml.sklearn import XGBClassifier as ConcreteXGBoostClassifier
|
| 18 |
|
| 19 |
INPUT_BROWSER_LIMIT = 635
|
| 20 |
+
SERVER_URL = "http://localhost:8000/"
|
| 21 |
# This repository's main necessary folders
|
| 22 |
REPO_DIR = Path(__file__).parent
|
| 23 |
MODEL_PATH = REPO_DIR / "client_folder"
|
| 24 |
KEYS_PATH = REPO_DIR / ".fhe_keys"
|
| 25 |
+
CLIENT_TMP_PATH = REPO_DIR / "client_tmp"
|
| 26 |
+
SERVER_TMP_PATH = REPO_DIR / "server_tmp"
|
| 27 |
+
|
| 28 |
+
# Create the necessary folders
|
| 29 |
+
KEYS_PATH.mkdir(exist_ok=True)
|
| 30 |
+
CLIENT_TMP_PATH.mkdir(exist_ok=True)
|
| 31 |
+
SERVER_TMP_PATH.mkdir(exist_ok=True)
|
| 32 |
|
| 33 |
+
subprocess.Popen(["uvicorn", "server:app"], cwd=REPO_DIR)
|
| 34 |
+
time.sleep(3)
|
| 35 |
|
| 36 |
|
| 37 |
def clean_directory():
|
|
|
|
| 175 |
|
| 176 |
# np.save(f".fhe_keys/{user_id}/eval_key.npy", serialized_evaluation_keys)
|
| 177 |
evaluation_key_path = KEYS_PATH / f"{user_id}/evaluation_key"
|
| 178 |
+
with evaluation_key_path.open("wb") as f:
|
| 179 |
+
f.write(serialized_evaluation_keys)
|
| 180 |
|
| 181 |
serialized_evaluation_keys_shorten_hex = serialized_evaluation_keys.hex()[:INPUT_BROWSER_LIMIT]
|
| 182 |
|
|
|
|
| 206 |
|
| 207 |
quant_user_symptoms = client.model.quantize_input(user_symptoms)
|
| 208 |
encrypted_quantized_user_symptoms = client.quantize_encrypt_serialize(user_symptoms)
|
| 209 |
+
assert isinstance(encrypted_quantized_user_symptoms, bytes)
|
| 210 |
encrypted_input_path = KEYS_PATH / f"{user_id}/encrypted_symptoms"
|
| 211 |
|
| 212 |
with encrypted_input_path.open("wb") as f:
|
|
|
|
| 233 |
}
|
| 234 |
|
| 235 |
|
| 236 |
+
def is_nan(input):
|
| 237 |
+
return input is None or (input is not None and len(input) < 1)
|
| 238 |
+
|
| 239 |
+
|
| 240 |
+
def send_input_fn(user_id, user_symptoms):
|
| 241 |
+
"""Send the encrypted input image as well as the evaluation key to the server.
|
| 242 |
+
|
| 243 |
+
Args:
|
| 244 |
+
user_id (int): The current user's ID.
|
| 245 |
+
filter_name (str): The current filter to consider.
|
| 246 |
+
"""
|
| 247 |
+
# Get the evaluation key path
|
| 248 |
+
|
| 249 |
+
if is_nan(user_id) or is_nan(user_symptoms):
|
| 250 |
+
return {
|
| 251 |
+
error_box_4: gr.update(
|
| 252 |
+
visible=True,
|
| 253 |
+
value="Please ensure that the evaluation key has been generated "
|
| 254 |
+
"and the symptoms have been submitted before sending the data to the server",
|
| 255 |
+
)
|
| 256 |
+
}
|
| 257 |
|
| 258 |
+
evaluation_key_path = KEYS_PATH / f"{user_id}/evaluation_key"
|
| 259 |
+
encrypted_input_path = KEYS_PATH / f"{user_id}/encrypted_symptoms"
|
|
|
|
|
|
|
|
|
|
| 260 |
|
| 261 |
+
if not evaluation_key_path.is_file():
|
| 262 |
+
print(f"Please generate the private key, first.{evaluation_key_path.is_file()=}")
|
| 263 |
|
| 264 |
+
return {
|
| 265 |
+
error_box_4: gr.update(visible=True, value="Please generate the private key first.")
|
| 266 |
+
}
|
| 267 |
|
| 268 |
+
if not encrypted_input_path.is_file():
|
| 269 |
+
print(f"Please submit your symptoms, first.{encrypted_input_path.is_file()=}")
|
| 270 |
|
| 271 |
+
return {
|
| 272 |
+
error_box_4: gr.update(
|
| 273 |
+
visible=True,
|
| 274 |
+
value="Please generate the private key and then encrypt an image first.",
|
| 275 |
+
)
|
| 276 |
+
}
|
| 277 |
|
| 278 |
+
# Define the data and files to post
|
| 279 |
+
data = {
|
| 280 |
+
"user_id": user_id,
|
| 281 |
+
"filter": user_symptoms,
|
| 282 |
+
}
|
| 283 |
|
| 284 |
+
files = [
|
| 285 |
+
("files", open(encrypted_input_path, "rb")),
|
| 286 |
+
("files", open(evaluation_key_path, "rb")),
|
| 287 |
+
]
|
|
|
|
| 288 |
|
| 289 |
+
# Send the encrypted input image and evaluation key to the server
|
| 290 |
+
url = SERVER_URL + "send_input"
|
| 291 |
+
with requests.post(
|
| 292 |
+
url=url,
|
| 293 |
+
data=data,
|
| 294 |
+
files=files,
|
| 295 |
+
) as response:
|
| 296 |
+
print(f"response.ok: {response.ok}")
|
| 297 |
|
| 298 |
+
return {error_box_4: gr.update(visible=False), server_response_box: gr.update(visible=True)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 299 |
|
| 300 |
|
| 301 |
# def decrypt_prediction(encrypted_quantized_vect, user_id):
|
|
|
|
| 306 |
# return predictions
|
| 307 |
|
| 308 |
|
| 309 |
+
def clear_all_btn():
|
| 310 |
|
| 311 |
+
clean_directory()
|
| 312 |
|
|
|
|
| 313 |
return {
|
| 314 |
box_default: None,
|
| 315 |
+
vect_textbox: None,
|
| 316 |
user_id_textbox: None,
|
| 317 |
eval_key_textbox: None,
|
| 318 |
quant_vect_textbox: None,
|
|
|
|
| 322 |
error_box_1: gr.update(visible=False),
|
| 323 |
error_box_2: gr.update(visible=False),
|
| 324 |
error_box_3: gr.update(visible=False),
|
| 325 |
+
error_box_4: gr.update(visible=False),
|
| 326 |
+
server_response_box: gr.update(visible=False),
|
| 327 |
**{box: None for box in check_boxes},
|
| 328 |
}
|
| 329 |
|
| 330 |
|
| 331 |
if __name__ == "__main__":
|
| 332 |
print("Starting demo ...")
|
|
|
|
| 333 |
|
| 334 |
(df_train, X_train, X_test), (df_test, y_train, y_test) = load_data()
|
| 335 |
|
|
|
|
| 455 |
gr.Markdown("# Step 3: Encode the message with the private key")
|
| 456 |
gr.Markdown("Client side")
|
| 457 |
|
| 458 |
+
encrypt_btn = gr.Button("Encode the message with the private key")
|
| 459 |
|
| 460 |
error_box_3 = gr.Textbox(label="Error", visible=False)
|
| 461 |
|
|
|
|
| 484 |
outputs=[vect_textbox, quant_vect_textbox, encrypted_vect_textbox, error_box_3],
|
| 485 |
)
|
| 486 |
|
| 487 |
+
gr.Markdown("# Step 4: Send the encrypted data to the server.")
|
| 488 |
+
gr.Markdown("Client side")
|
| 489 |
+
|
| 490 |
+
send_input_btn = gr.Button("Send the encrypted data to the server..")
|
| 491 |
+
error_box_4 = gr.Textbox(label="Error", visible=False)
|
| 492 |
+
server_response_box = gr.Textbox(value="Data sent", visible=False, show_label=False)
|
| 493 |
+
|
| 494 |
+
send_input_btn.click(
|
| 495 |
+
send_input_fn,
|
| 496 |
+
inputs=[user_id_textbox, user_vector_textbox],
|
| 497 |
+
outputs=[error_box_4, server_response_box],
|
| 498 |
+
)
|
| 499 |
+
|
| 500 |
+
gr.Markdown("# Step 5: Run the FHE evaluation")
|
| 501 |
gr.Markdown("Server side")
|
| 502 |
|
| 503 |
run_fhe = gr.Button("Run the FHE evaluation")
|
| 504 |
|
| 505 |
+
gr.Markdown("# Step 6: Decrypt the sentiment")
|
| 506 |
gr.Markdown("Server side")
|
| 507 |
|
| 508 |
decrypt_target_botton = gr.Button("Decrypt the sentiment")
|
|
|
|
| 523 |
error_box_1,
|
| 524 |
error_box_2,
|
| 525 |
error_box_3,
|
| 526 |
+
error_box_4,
|
| 527 |
+
vect_textbox,
|
| 528 |
user_id_textbox,
|
| 529 |
eval_key_textbox,
|
| 530 |
quant_vect_textbox,
|
| 531 |
user_vector_textbox,
|
| 532 |
+
server_response_box,
|
| 533 |
eval_key_len_textbox,
|
| 534 |
encrypted_vect_textbox,
|
| 535 |
*check_boxes,
|
server.py
CHANGED
|
@@ -9,6 +9,11 @@ from fastapi.responses import JSONResponse, Response
|
|
| 9 |
|
| 10 |
from concrete.ml.deployment import FHEModelServer
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
# Initialize an instance of FastAPI
|
| 13 |
app = FastAPI()
|
| 14 |
|
|
@@ -29,65 +34,65 @@ def send_input(
|
|
| 29 |
filter: str = Form(),
|
| 30 |
files: List[UploadFile] = File(),
|
| 31 |
):
|
|
|
|
| 32 |
"""Send the inputs to the server."""
|
| 33 |
# Retrieve the encrypted input image and the evaluation key paths
|
| 34 |
-
|
| 35 |
-
|
| 36 |
|
| 37 |
-
# Write the files using the above paths
|
| 38 |
-
with
|
| 39 |
"wb"
|
| 40 |
) as evaluation_key:
|
| 41 |
-
|
| 42 |
evaluation_key.write(files[1].file.read())
|
| 43 |
|
| 44 |
|
| 45 |
-
@app.post("/run_fhe")
|
| 46 |
-
def run_fhe(
|
| 47 |
-
user_id: str = Form(),
|
| 48 |
-
filter: str = Form(),
|
| 49 |
-
):
|
| 50 |
-
"""Execute the filter on the encrypted input image using FHE."""
|
| 51 |
-
# Retrieve the encrypted input image and the evaluation key paths
|
| 52 |
-
encrypted_image_path = get_server_file_path("encrypted_image", user_id, filter)
|
| 53 |
-
evaluation_key_path = get_server_file_path("evaluation_key", user_id, filter)
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
encrypted_output_image = fhe_server.run(encrypted_image, evaluation_key)
|
| 68 |
-
fhe_execution_time = round(time.time() - start, 2)
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
|
|
|
|
|
|
| 72 |
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
encrypted_output.write(encrypted_output_image)
|
| 76 |
|
| 77 |
-
|
|
|
|
|
|
|
| 78 |
|
|
|
|
| 79 |
|
| 80 |
-
@app.post("/get_output")
|
| 81 |
-
def get_output(
|
| 82 |
-
user_id: str = Form(),
|
| 83 |
-
filter: str = Form(),
|
| 84 |
-
):
|
| 85 |
-
"""Retrieve the encrypted output image."""
|
| 86 |
-
# Retrieve the encrypted output image path
|
| 87 |
-
encrypted_output_path = get_server_file_path("encrypted_output", user_id, filter)
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
-
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
from concrete.ml.deployment import FHEModelServer
|
| 11 |
|
| 12 |
+
REPO_DIR = Path(__file__).parent
|
| 13 |
+
KEYS_PATH = REPO_DIR / ".fhe_keys"
|
| 14 |
+
MODEL_PATH = REPO_DIR / "client_folder"
|
| 15 |
+
|
| 16 |
+
SERVER_TMP_PATH = REPO_DIR / "server_tmp"
|
| 17 |
# Initialize an instance of FastAPI
|
| 18 |
app = FastAPI()
|
| 19 |
|
|
|
|
| 34 |
filter: str = Form(),
|
| 35 |
files: List[UploadFile] = File(),
|
| 36 |
):
|
| 37 |
+
|
| 38 |
"""Send the inputs to the server."""
|
| 39 |
# Retrieve the encrypted input image and the evaluation key paths
|
| 40 |
+
evaluation_key_path = SERVER_TMP_PATH / f"{user_id}_valuation_key"
|
| 41 |
+
encrypted_input_path = SERVER_TMP_PATH / f"{user_id}_encrypted_symptoms"
|
| 42 |
|
| 43 |
+
# # Write the files using the above paths
|
| 44 |
+
with encrypted_input_path.open("wb") as encrypted_input, evaluation_key_path.open(
|
| 45 |
"wb"
|
| 46 |
) as evaluation_key:
|
| 47 |
+
encrypted_input.write(files[0].file.read())
|
| 48 |
evaluation_key.write(files[1].file.read())
|
| 49 |
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
+
# @app.post("/run_fhe")
|
| 53 |
+
# def run_fhe(
|
| 54 |
+
# user_id: str = Form(),
|
| 55 |
+
# filter: str = Form(),
|
| 56 |
+
# ):
|
| 57 |
+
# """Execute the filter on the encrypted input image using FHE."""
|
| 58 |
+
# Retrieve the encrypted input image and the evaluation key paths
|
| 59 |
+
# encrypted_image_path = get_server_file_path("encrypted_image", user_id, filter)
|
| 60 |
+
# evaluation_key_path = get_server_file_path("evaluation_key", user_id, filter)
|
| 61 |
|
| 62 |
+
# Read the files using the above paths
|
| 63 |
+
# with encrypted_image_path.open("rb") as encrypted_image_file, evaluation_key_path.open(
|
| 64 |
+
# "rb"
|
| 65 |
+
# ) as evaluation_key_file:
|
| 66 |
+
# encrypted_image = encrypted_image_file.read()
|
| 67 |
+
# evaluation_key = evaluation_key_file.read()
|
| 68 |
|
| 69 |
+
# Load the FHE server
|
| 70 |
+
# fhe_server = FHEServer(FILTERS_PATH / f"{filter}/deployment")
|
|
|
|
|
|
|
| 71 |
|
| 72 |
+
# Run the FHE execution
|
| 73 |
+
# start = time.time()
|
| 74 |
+
# encrypted_output_image = fhe_server.run(encrypted_image, evaluation_key)
|
| 75 |
+
# fhe_execution_time = round(time.time() - start, 2)
|
| 76 |
|
| 77 |
+
# Retrieve the encrypted output image path
|
| 78 |
+
# encrypted_output_path = get_server_file_path("encrypted_output", user_id, filter)
|
|
|
|
| 79 |
|
| 80 |
+
# Write the file using the above path
|
| 81 |
+
# with encrypted_output_path.open("wb") as encrypted_output:
|
| 82 |
+
# encrypted_output.write(encrypted_output_image)
|
| 83 |
|
| 84 |
+
# return JSONResponse(content=fhe_execution_time)
|
| 85 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
+
# @app.post("/get_output")
|
| 88 |
+
# def get_output(
|
| 89 |
+
# user_id: str = Form(),
|
| 90 |
+
# filter: str = Form(),
|
| 91 |
+
# ):
|
| 92 |
+
# """Retrieve the encrypted output image."""
|
| 93 |
+
# Retrieve the encrypted output image path
|
| 94 |
+
# encrypted_output_path = get_server_file_path("encrypted_output", user_id, filter)
|
| 95 |
|
| 96 |
+
# Read the file using the above path
|
| 97 |
+
# with encrypted_output_path.open("rb") as encrypted_output_file:
|
| 98 |
+
# encrypted_output = encrypted_output_file.read()
|