zamalali
Initial push without .env
15067e5
import os
import io
import base64
import gc
from huggingface_hub.utils import HfHubHTTPError
from langchain_core.prompts import PromptTemplate
from langchain_huggingface import HuggingFaceEndpoint
import io, base64
from PIL import Image
import gradio as gr
import torch
import gradio as gr
import numpy as np
import pandas as pd
import pymupdf
from PIL import Image
from pypdf import PdfReader
from dotenv import load_dotenv
from welcome_text import WELCOME_INTRO
from doctr.io import DocumentFile
from doctr.models import ocr_predictor
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
import chromadb
from chromadb.utils import embedding_functions
from chromadb.utils.data_loaders import ImageLoader
from langchain_core.prompts import PromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_huggingface import HuggingFaceEndpoint
from utils import extract_pdfs, extract_images, clean_text, image_to_bytes
from utils import *
# ─────────────────────────────────────────────────────────────────────────────
# Load .env
load_dotenv()
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
# OCR + multimodal image description setup
ocr_model = ocr_predictor(
"db_resnet50", "crnn_mobilenet_v3_large", pretrained=True, assume_straight_pages=True
)
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
vision_model = LlavaNextForConditionalGeneration.from_pretrained(
"llava-hf/llava-v1.6-mistral-7b-hf",
torch_dtype=torch.float16,
low_cpu_mem_usage=True
).to("cpu")
def get_image_description(image: Image.Image) -> str:
"""Generate a one-sentence description via LlavaNext."""
torch.cuda.empty_cache()
gc.collect()
prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"
inputs = processor(prompt, image, return_tensors="pt").to("cpu")
output = vision_model.generate(**inputs, max_new_tokens=100)
return processor.decode(output[0], skip_special_tokens=True)
# Vector DB setup
# at top of file, alongside your other imports
from chromadb.utils import embedding_functions
from chromadb.utils.data_loaders import ImageLoader
import chromadb
from langchain.text_splitter import RecursiveCharacterTextSplitter
from utils import image_to_bytes # your helper
# 1) Create one shared embedding function (defaulting to All-MiniLM-L6-v2, 384-dim)
SHARED_EMB_FN = embedding_functions.SentenceTransformerEmbeddingFunction(
model_name="all-MiniLM-L6-v2"
)
def get_vectordb(text: str, images: list[Image.Image], img_names: list[str]):
"""
Build an in-memory ChromaDB instance with two collections:
• text_db (chunks of the PDF text)
• image_db (image descriptions + raw image bytes)
Returns the Chroma client for later querying.
"""
# ——— 1) Init & wipe old ————————————————
client = chromadb.EphemeralClient()
for col in ("text_db", "image_db"):
if col in [c.name for c in client.list_collections()]:
client.delete_collection(col)
# ——— 2) Create fresh collections —————————
text_col = client.get_or_create_collection(
name="text_db",
embedding_function=SHARED_EMB_FN,
data_loader=ImageLoader(), # loader only matters for images, benign here
)
img_col = client.get_or_create_collection(
name="image_db",
embedding_function=SHARED_EMB_FN,
metadata={"hnsw:space": "cosine"},
data_loader=ImageLoader(),
)
# ——— 3) Add images if any ———————————————
if images:
descs = []
metas = []
for idx, img in enumerate(images):
# build one-line caption (or fallback)
try:
caption = get_image_description(img)
except Exception:
caption = "⚠️ could not describe image"
descs.append(f"{img_names[idx]}: {caption}")
metas.append({"image": image_to_bytes(img)})
img_col.add(
ids=[str(i) for i in range(len(images))],
documents=descs,
metadatas=metas,
)
# ——— 4) Chunk & add text ———————————————
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
docs = splitter.create_documents([text])
text_col.add(
ids=[str(i) for i in range(len(docs))],
documents=[d.page_content for d in docs],
)
return client
# Text extraction
def result_to_text(result, as_text=False):
pages = []
for pg in result.pages:
txt = " ".join(w.value for block in pg.blocks for line in block.lines for w in line.words)
pages.append(clean_text(txt))
return "\n\n".join(pages) if as_text else pages
OCR_CHOICES = {
"db_resnet50 + crnn_mobilenet_v3_large": ("db_resnet50", "crnn_mobilenet_v3_large"),
"db_resnet50 + crnn_resnet31": ("db_resnet50", "crnn_resnet31"),
}
def extract_data_from_pdfs(
docs,
session,
include_images, # "Include Images" or "Exclude Images"
do_ocr, # "Get Text With OCR" or "Get Available Text Only"
ocr_choice, # key into OCR_CHOICES
vlm_choice, # HF repo ID for LlavaNext
progress=gr.Progress()
):
"""
1) Dynamically instantiate the chosen OCR pipeline (if any)
2) Dynamically instantiate the chosen vision‐language model
3) Override the global get_image_description to use that model for captions
4) Extract text & images, index into ChromaDB
"""
if not docs:
raise gr.Error("No documents to process")
# ——— 1) Set up OCR if requested ————————————————
if do_ocr == "Get Text With OCR":
db_m, crnn_m = OCR_CHOICES[ocr_choice]
local_ocr = ocr_predictor(db_m, crnn_m, pretrained=True, assume_straight_pages=True)
else:
local_ocr = None
# ——— 2) Set up vision‐language model —————————————
proc = LlavaNextProcessor.from_pretrained(vlm_choice)
vis = LlavaNextForConditionalGeneration.from_pretrained(
vlm_choice,
torch_dtype=torch.float16,
low_cpu_mem_usage=True
).to("cpu")
# ——— 3) Monkey‐patch global get_image_description ————
def describe(img: Image.Image) -> str:
torch.cuda.empty_cache(); gc.collect()
prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"
inputs = proc(prompt, img, return_tensors="pt").to("cpu")
output = vis.generate(**inputs, max_new_tokens=100)
return proc.decode(output[0], skip_special_tokens=True)
global get_image_description
get_image_description = describe
# ——— 4) Extract text & images ————————————————
progress(0.2, "Extracting text and images…")
all_text, images, names = "", [], []
for path in docs:
if local_ocr:
pdf = DocumentFile.from_pdf(path)
res = local_ocr(pdf)
all_text += result_to_text(res, as_text=True) + "\n\n"
else:
txt = PdfReader(path).pages[0].extract_text() or ""
all_text += "\n\n" + txt + "\n\n"
if include_images == "Include Images":
imgs = extract_images([path])
images.extend(imgs)
names.extend([os.path.basename(path)] * len(imgs))
# ——— 5) Index into vector DB ————————————————
progress(0.6, "Indexing in vector DB…")
vdb = get_vectordb(all_text, images, names)
session["processed"] = True
sample_imgs = images[:4] if include_images == "Include Images" else []
return (
vdb,
session,
gr.Row(visible=True),
all_text[:2000] + "...",
sample_imgs,
"<h3>Done!</h3>"
)
# Chat function
def conversation(
vdb, question: str, num_ctx, img_ctx,
history: list, temp: float, max_tok: int, model_id: str
):
# 0) Cast the context sliders to ints
num_ctx = int(num_ctx)
img_ctx = int(img_ctx)
# 1) Guard: must have extracted first
if vdb is None:
raise gr.Error("Please extract data first")
# 2) Instantiate the chosen HF endpoint
llm = HuggingFaceEndpoint(
repo_id=model_id,
temperature=temp,
max_new_tokens=max_tok,
huggingfacehub_api_token=HF_TOKEN
)
# 3) Query text collection
text_col = vdb.get_collection("text_db")
docs = text_col.query(
query_texts=[question],
n_results=num_ctx, # now an int
include=["documents"]
)["documents"][0]
# 4) Query image collection
img_col = vdb.get_collection("image_db")
img_q = img_col.query(
query_texts=[question],
n_results=img_ctx, # now an int
include=["metadatas", "documents"]
)
# … rest unchanged …
images, img_descs = [], img_q["documents"][0] or ["No images found"]
for meta in img_q["metadatas"][0]:
b64 = meta.get("image", "")
try:
images.append(Image.open(io.BytesIO(base64.b64decode(b64))))
except:
pass
img_desc = "\n".join(img_descs)
# 5) Build prompt
prompt = PromptTemplate(
template="""
Context:
{text}
Included Images:
{img_desc}
Question:
{q}
Answer:
""",
input_variables=["text", "img_desc", "q"],
)
context = "\n\n".join(docs)
user_input = prompt.format(text=context, img_desc=img_desc, q=question)
# 6) Call the model with error handling
try:
answer = llm.invoke(user_input)
except HfHubHTTPError as e:
if e.response.status_code == 404:
answer = f"❌ Model `{model_id}` not hosted on HF Inference API."
else:
answer = f"⚠️ HF API error: {e}"
except Exception as e:
answer = f"⚠️ Unexpected error: {e}"
# 7) Append to history
new_history = history + [
{"role":"user", "content": question},
{"role":"assistant","content": answer}
]
# 8) Return updated history, docs, images
return new_history, docs, images
# ─────────────────────────────────────────────────────────────────────────────
# Gradio UI
CSS = """
footer {visibility:hidden;}
"""
MODEL_OPTIONS = [
"HuggingFaceH4/zephyr-7b-beta",
"mistralai/Mistral-7B-Instruct-v0.2",
"openchat/openchat-3.5-0106",
"google/gemma-7b-it",
"deepseek-ai/deepseek-llm-7b-chat",
"microsoft/Phi-3-mini-4k-instruct",
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"Qwen/Qwen1.5-7B-Chat",
"tiiuae/falcon-7b-instruct", # Falcon 7B Instruct
"bigscience/bloomz-7b1", # BLOOMZ 7B
"facebook/opt-2.7b",
]
with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
vdb_state = gr.State()
session_state = gr.State({})
# ─── Welcome Screen ─────────────────────────────────────────────
with gr.Column(visible=True) as welcome_col:
gr.Markdown(
f"<div style='text-align: center'>\n{WELCOME_INTRO}\n</div>",
elem_id="welcome_md"
)
start_btn = gr.Button("🚀 Start")
# ─── Main App (hidden until Start is clicked) ───────────────────
with gr.Column(visible=False) as app_col:
gr.Markdown("## 📚 Multimodal Chat-PDF Playground")
with gr.Tabs():
# Tab 1: Upload & Extract
with gr.TabItem("1. Upload & Extract"):
docs = gr.File(
file_count="multiple",
file_types=[".pdf"],
label="Upload PDFs"
)
include_dd = gr.Radio(
["Include Images", "Exclude Images"],
value="Exclude Images",
label="Images"
)
ocr_dd = gr.Dropdown(
choices=[
"db_resnet50 + crnn_mobilenet_v3_large",
"db_resnet50 + crnn_resnet31"
],
value="db_resnet50 + crnn_mobilenet_v3_large",
label="OCR Model"
)
vlm_dd = gr.Dropdown(
choices=[
"llava-hf/llava-v1.6-mistral-7b-hf",
"llava-hf/llava-v1.5-mistral-7b"
],
value="llava-hf/llava-v1.6-mistral-7b-hf",
label="Vision-Language Model"
)
extract_btn = gr.Button("Extract")
preview_text = gr.Textbox(lines=10, label="Sample Text", interactive=False)
preview_img = gr.Gallery(label="Sample Images", rows=2, value=[])
extract_btn.click(
extract_data_from_pdfs,
inputs=[
docs,
session_state,
include_dd,
gr.Radio(
["Get Text With OCR", "Get Available Text Only"],
value="Get Available Text Only",
label="OCR"
),
ocr_dd,
vlm_dd
],
outputs=[
vdb_state,
session_state,
gr.Row(visible=False),
preview_text,
preview_img,
gr.HTML()
]
)
# Tab 2: Chat
with gr.TabItem("2. Chat"):
with gr.Row():
with gr.Column(scale=3):
chat = gr.Chatbot(type="messages", label="Chat")
msg = gr.Textbox(
placeholder="Ask about your PDF...",
label="Your question"
)
send = gr.Button("Send")
with gr.Column(scale=1):
model_dd = gr.Dropdown(
MODEL_OPTIONS,
value=MODEL_OPTIONS[0],
label="Choose Chat Model"
)
num_ctx = gr.Slider(1,20,value=3,label="Text Contexts")
img_ctx = gr.Slider(1,10,value=2,label="Image Contexts")
temp = gr.Slider(0.1,1.0,step=0.1,value=0.4,label="Temperature")
max_tok = gr.Slider(10,1000,step=10,value=200,label="Max Tokens")
send.click(
conversation,
inputs=[
vdb_state,
msg,
num_ctx,
img_ctx,
chat,
temp,
max_tok,
model_dd
],
outputs=[
chat,
gr.Dataframe(),
gr.Gallery(label="Relevant Images", rows=2, value=[])
]
)
# Footer inside app_col
gr.HTML("<center>Made with ❤️ by Zamal</center>")
# ─── Wire the Start button ───────────────────────────────────────
start_btn.click(
fn=lambda: (gr.update(visible=False), gr.update(visible=True)),
inputs=[], outputs=[welcome_col, app_col]
)
if __name__ == "__main__":
demo.launch()