Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -5,143 +5,294 @@ import gc
|
|
5 |
from huggingface_hub.utils import HfHubHTTPError
|
6 |
from langchain_core.prompts import PromptTemplate
|
7 |
from langchain_huggingface import HuggingFaceEndpoint
|
8 |
-
|
9 |
-
from
|
10 |
-
|
11 |
-
|
|
|
|
|
|
|
|
|
12 |
from PIL import Image
|
13 |
-
from
|
|
|
|
|
|
|
14 |
from welcome_text import WELCOME_INTRO
|
|
|
|
|
|
|
|
|
|
|
15 |
import chromadb
|
16 |
from chromadb.utils import embedding_functions
|
|
|
|
|
|
|
17 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
18 |
-
|
|
|
|
|
|
|
19 |
|
20 |
# ─────────────────────────────────────────────────────────────────────────────
|
21 |
-
#
|
22 |
-
|
|
|
23 |
processor = None
|
24 |
vision_model = None
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
"db_resnet50 + crnn_mobilenet_v3_large": ("db_resnet50", "crnn_mobilenet_v3_large"),
|
29 |
-
"db_resnet50 + crnn_resnet31": ("db_resnet50", "crnn_resnet31"),
|
30 |
-
}
|
31 |
-
SHARED_EMB_FN = embedding_functions.SentenceTransformerEmbeddingFunction(
|
32 |
-
model_name="all-MiniLM-L6-v2"
|
33 |
)
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
36 |
global processor, vision_model
|
|
|
|
|
37 |
if processor is None or vision_model is None:
|
38 |
-
|
39 |
-
vlm = "llava-hf/llava-v1.6-mistral-7b-hf"
|
40 |
-
processor = LlavaNextProcessor.from_pretrained(vlm)
|
41 |
vision_model = LlavaNextForConditionalGeneration.from_pretrained(
|
42 |
-
|
|
|
|
|
43 |
).to("cuda")
|
44 |
-
|
|
|
|
|
|
|
45 |
prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"
|
46 |
-
inputs = processor(prompt,
|
47 |
-
|
48 |
-
return processor.decode(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
def extract_data_from_pdfs(
|
51 |
-
docs
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
):
|
53 |
if not docs:
|
54 |
raise gr.Error("No documents to process")
|
55 |
|
56 |
-
# 1)
|
57 |
-
local_ocr = None
|
58 |
if do_ocr == "Get Text With OCR":
|
59 |
db_m, crnn_m = OCR_CHOICES[ocr_choice]
|
60 |
local_ocr = ocr_predictor(db_m, crnn_m, pretrained=True, assume_straight_pages=True)
|
|
|
|
|
61 |
|
62 |
-
# 2)
|
63 |
proc = LlavaNextProcessor.from_pretrained(vlm_choice)
|
64 |
-
vis = LlavaNextForConditionalGeneration
|
65 |
-
|
66 |
-
|
67 |
|
68 |
-
# 3)
|
69 |
-
def describe(img
|
70 |
torch.cuda.empty_cache(); gc.collect()
|
71 |
prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"
|
72 |
inp = proc(prompt, img, return_tensors="pt").to("cuda")
|
73 |
out = vis.generate(**inp, max_new_tokens=100)
|
74 |
return proc.decode(out[0], skip_special_tokens=True)
|
75 |
-
|
|
|
76 |
get_image_description = describe
|
77 |
|
78 |
-
# 4)
|
79 |
progress(0.2, "Extracting text and images…")
|
80 |
-
|
81 |
-
|
|
|
82 |
if local_ocr:
|
83 |
-
pdf = DocumentFile.from_pdf(
|
84 |
res = local_ocr(pdf)
|
85 |
-
|
86 |
else:
|
87 |
-
|
88 |
|
89 |
if include_images == "Include Images":
|
90 |
-
imgs = extract_images([
|
91 |
images.extend(imgs)
|
92 |
-
names.extend([os.path.basename(
|
93 |
|
94 |
-
# 5) Build
|
95 |
progress(0.6, "Indexing in vector DB…")
|
96 |
-
client =
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
103 |
|
104 |
-
if images:
|
105 |
-
descs, metas = [], []
|
106 |
-
for i, im in enumerate(images):
|
107 |
-
cap = get_image_description(im)
|
108 |
-
descs.append(f"{names[i]}: {cap}")
|
109 |
-
metas.append({"image": image_to_bytes(im)})
|
110 |
-
img_col.add(ids=[str(i) for i in range(len(images))],
|
111 |
-
documents=descs, metadatas=metas)
|
112 |
|
113 |
-
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
114 |
-
docs_ = splitter.create_documents([full_text])
|
115 |
-
text_col.add(ids=[str(i) for i in range(len(docs_))],
|
116 |
-
documents=[d.page_content for d in docs_])
|
117 |
|
118 |
-
CURRENT_VDB = client
|
119 |
-
session["processed"] = True
|
120 |
-
sample = images[:4] if include_images=="Include Images" else []
|
121 |
-
return session, full_text[:2000]+"...", sample, "<h3>Done!</h3>"
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
126 |
raise gr.Error("Please extract data first")
|
127 |
|
128 |
-
#
|
129 |
-
|
130 |
-
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
-
#
|
133 |
-
|
134 |
-
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
img_descs = img_q["documents"][0] or ["No images found"]
|
137 |
images = []
|
138 |
-
for
|
139 |
-
|
140 |
-
try:
|
141 |
-
|
|
|
|
|
142 |
img_desc = "\n".join(img_descs)
|
143 |
|
144 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
145 |
prompt = PromptTemplate(
|
146 |
template="""
|
147 |
Context:
|
@@ -154,23 +305,23 @@ Question:
|
|
154 |
{q}
|
155 |
|
156 |
Answer:
|
157 |
-
""", input_variables=["text","img_desc","q"]
|
|
|
158 |
inp = prompt.format(text="\n\n".join(docs), img_desc=img_desc, q=question)
|
159 |
|
160 |
-
|
161 |
-
|
162 |
-
temperature=temp, max_new_tokens=max_tok,
|
163 |
-
huggingfacehub_api_token=HF_TOKEN
|
164 |
-
)
|
165 |
-
try: ans = llm.invoke(inp)
|
166 |
except HfHubHTTPError as e:
|
167 |
-
|
168 |
except Exception as e:
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
-
new_hist = history + [{"role":"user","content":question},
|
172 |
-
{"role":"assistant","content":ans}]
|
173 |
-
return new_hist, docs, images
|
174 |
|
175 |
|
176 |
|
@@ -258,4 +409,4 @@ with gr.Blocks(css=CSS, theme=gr.themes.Soft()) as demo:
|
|
258 |
)
|
259 |
|
260 |
if __name__ == "__main__":
|
261 |
-
demo.launch()
|
|
|
5 |
from huggingface_hub.utils import HfHubHTTPError
|
6 |
from langchain_core.prompts import PromptTemplate
|
7 |
from langchain_huggingface import HuggingFaceEndpoint
|
8 |
+
import io, base64
|
9 |
+
from PIL import Image
|
10 |
+
import torch
|
11 |
+
import gradio as gr
|
12 |
+
import spaces
|
13 |
+
import numpy as np
|
14 |
+
import pandas as pd
|
15 |
+
import pymupdf
|
16 |
from PIL import Image
|
17 |
+
from pypdf import PdfReader
|
18 |
+
from dotenv import load_dotenv
|
19 |
+
import shutil
|
20 |
+
from chromadb.config import Settings, DEFAULT_TENANT, DEFAULT_DATABASE
|
21 |
from welcome_text import WELCOME_INTRO
|
22 |
+
|
23 |
+
from doctr.io import DocumentFile
|
24 |
+
from doctr.models import ocr_predictor
|
25 |
+
from transformers import LlavaNextProcessor, LlavaNextForConditionalGeneration
|
26 |
+
|
27 |
import chromadb
|
28 |
from chromadb.utils import embedding_functions
|
29 |
+
from chromadb.utils.data_loaders import ImageLoader
|
30 |
+
|
31 |
+
from langchain_core.prompts import PromptTemplate
|
32 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
33 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
34 |
+
|
35 |
+
from utils import extract_pdfs, extract_images, clean_text, image_to_bytes
|
36 |
+
from utils import *
|
37 |
|
38 |
# ─────────────────────────────────────────────────────────────────────────────
|
39 |
+
# Load .env
|
40 |
+
load_dotenv()
|
41 |
+
HF_TOKEN = os.getenv("HUGGINGFACE_TOKEN")
|
42 |
processor = None
|
43 |
vision_model = None
|
44 |
+
# OCR + multimodal image description setup
|
45 |
+
ocr_model = ocr_predictor(
|
46 |
+
"db_resnet50", "crnn_mobilenet_v3_large", pretrained=True, assume_straight_pages=True
|
|
|
|
|
|
|
|
|
|
|
47 |
)
|
48 |
+
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
|
49 |
+
vision_model = LlavaNextForConditionalGeneration.from_pretrained(
|
50 |
+
"llava-hf/llava-v1.6-mistral-7b-hf",
|
51 |
+
torch_dtype=torch.float16,
|
52 |
+
low_cpu_mem_usage=True
|
53 |
+
).to("cuda")
|
54 |
+
|
55 |
+
|
56 |
+
# Add at the top of your module, alongside your other globals
|
57 |
+
PERSIST_DIR = "./chroma_db"
|
58 |
+
if os.path.exists(PERSIST_DIR):
|
59 |
+
shutil.rmtree(PERSIST_DIR)
|
60 |
+
|
61 |
+
@spaces.GPU()
|
62 |
+
def get_image_description(image: Image.Image) -> str:
|
63 |
+
"""
|
64 |
+
Lazy-loads the Llava processor + model inside the GPU worker,
|
65 |
+
runs captioning, and returns a one-sentence description.
|
66 |
+
"""
|
67 |
global processor, vision_model
|
68 |
+
|
69 |
+
# On first call, instantiate + move to CUDA
|
70 |
if processor is None or vision_model is None:
|
71 |
+
processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
|
|
|
|
|
72 |
vision_model = LlavaNextForConditionalGeneration.from_pretrained(
|
73 |
+
"llava-hf/llava-v1.6-mistral-7b-hf",
|
74 |
+
torch_dtype=torch.float16,
|
75 |
+
low_cpu_mem_usage=True
|
76 |
).to("cuda")
|
77 |
+
|
78 |
+
torch.cuda.empty_cache()
|
79 |
+
gc.collect()
|
80 |
+
|
81 |
prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"
|
82 |
+
inputs = processor(prompt, image, return_tensors="pt").to("cuda")
|
83 |
+
output = vision_model.generate(**inputs, max_new_tokens=100)
|
84 |
+
return processor.decode(output[0], skip_special_tokens=True)
|
85 |
+
|
86 |
+
# Vector DB setup
|
87 |
+
# at top of file, alongside your other imports
|
88 |
+
from chromadb.utils import embedding_functions
|
89 |
+
from chromadb.utils.data_loaders import ImageLoader
|
90 |
+
import chromadb
|
91 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
92 |
+
from utils import image_to_bytes # your helper
|
93 |
+
|
94 |
+
# 1) Create one shared embedding function (defaulting to All-MiniLM-L6-v2, 384-dim)
|
95 |
+
SHARED_EMB_FN = embedding_functions.SentenceTransformerEmbeddingFunction(
|
96 |
+
model_name="all-MiniLM-L6-v2"
|
97 |
+
)
|
98 |
+
|
99 |
+
def get_vectordb(text: str, images: list[Image.Image], img_names: list[str]):
|
100 |
+
"""
|
101 |
+
Build a *persistent* ChromaDB instance on disk, with two collections:
|
102 |
+
• text_db (chunks of the PDF text)
|
103 |
+
• image_db (image descriptions + raw image bytes)
|
104 |
+
"""
|
105 |
+
# 1) Make or clean the on-disk folder
|
106 |
+
shutil.rmtree(PERSIST_DIR, ignore_errors=True)
|
107 |
+
os.makedirs(PERSIST_DIR, exist_ok=True)
|
108 |
+
|
109 |
+
client = chromadb.PersistentClient(
|
110 |
+
path=PERSIST_DIR,
|
111 |
+
settings=Settings(),
|
112 |
+
tenant=DEFAULT_TENANT,
|
113 |
+
database=DEFAULT_DATABASE
|
114 |
+
)
|
115 |
+
|
116 |
+
# 3) Create / wipe collections
|
117 |
+
for col in ("text_db", "image_db"):
|
118 |
+
if col in [c.name for c in client.list_collections()]:
|
119 |
+
client.delete_collection(col)
|
120 |
+
|
121 |
+
text_col = client.get_or_create_collection(
|
122 |
+
name="text_db",
|
123 |
+
embedding_function=SHARED_EMB_FN
|
124 |
+
)
|
125 |
+
img_col = client.get_or_create_collection(
|
126 |
+
name="image_db",
|
127 |
+
embedding_function=SHARED_EMB_FN,
|
128 |
+
metadata={"hnsw:space": "cosine"}
|
129 |
+
)
|
130 |
+
|
131 |
+
# 4) Add images
|
132 |
+
if images:
|
133 |
+
descs, metas = [], []
|
134 |
+
for idx, img in enumerate(images):
|
135 |
+
try:
|
136 |
+
cap = get_image_description(img)
|
137 |
+
except:
|
138 |
+
cap = "⚠️ could not describe image"
|
139 |
+
descs.append(f"{img_names[idx]}: {cap}")
|
140 |
+
metas.append({"image": image_to_bytes(img)})
|
141 |
+
img_col.add(ids=[str(i) for i in range(len(images))],
|
142 |
+
documents=descs,
|
143 |
+
metadatas=metas)
|
144 |
+
|
145 |
+
# 5) Chunk & add text
|
146 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
147 |
+
docs = splitter.create_documents([text])
|
148 |
+
text_col.add(ids=[str(i) for i in range(len(docs))],
|
149 |
+
documents=[d.page_content for d in docs])
|
150 |
+
|
151 |
+
return client
|
152 |
+
|
153 |
+
|
154 |
|
155 |
+
|
156 |
+
# Text extraction
|
157 |
+
def result_to_text(result, as_text=False):
|
158 |
+
pages = []
|
159 |
+
for pg in result.pages:
|
160 |
+
txt = " ".join(w.value for block in pg.blocks for line in block.lines for w in line.words)
|
161 |
+
pages.append(clean_text(txt))
|
162 |
+
return "\n\n".join(pages) if as_text else pages
|
163 |
+
|
164 |
+
OCR_CHOICES = {
|
165 |
+
"db_resnet50 + crnn_mobilenet_v3_large": ("db_resnet50", "crnn_mobilenet_v3_large"),
|
166 |
+
"db_resnet50 + crnn_resnet31": ("db_resnet50", "crnn_resnet31"),
|
167 |
+
}
|
168 |
+
|
169 |
+
@spaces.GPU()
|
170 |
def extract_data_from_pdfs(
|
171 |
+
docs: list[str],
|
172 |
+
session: dict,
|
173 |
+
include_images: str,
|
174 |
+
do_ocr: str,
|
175 |
+
ocr_choice: str,
|
176 |
+
vlm_choice: str,
|
177 |
+
progress=gr.Progress()
|
178 |
):
|
179 |
if not docs:
|
180 |
raise gr.Error("No documents to process")
|
181 |
|
182 |
+
# 1) OCR pipeline if requested
|
|
|
183 |
if do_ocr == "Get Text With OCR":
|
184 |
db_m, crnn_m = OCR_CHOICES[ocr_choice]
|
185 |
local_ocr = ocr_predictor(db_m, crnn_m, pretrained=True, assume_straight_pages=True)
|
186 |
+
else:
|
187 |
+
local_ocr = None
|
188 |
|
189 |
+
# 2) Vision–language model
|
190 |
proc = LlavaNextProcessor.from_pretrained(vlm_choice)
|
191 |
+
vis = (LlavaNextForConditionalGeneration
|
192 |
+
.from_pretrained(vlm_choice, torch_dtype=torch.float16, low_cpu_mem_usage=True)
|
193 |
+
.to("cuda"))
|
194 |
|
195 |
+
# 3) Monkey-patch caption fn
|
196 |
+
def describe(img):
|
197 |
torch.cuda.empty_cache(); gc.collect()
|
198 |
prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"
|
199 |
inp = proc(prompt, img, return_tensors="pt").to("cuda")
|
200 |
out = vis.generate(**inp, max_new_tokens=100)
|
201 |
return proc.decode(out[0], skip_special_tokens=True)
|
202 |
+
|
203 |
+
global get_image_description
|
204 |
get_image_description = describe
|
205 |
|
206 |
+
# 4) Extract text & images
|
207 |
progress(0.2, "Extracting text and images…")
|
208 |
+
all_text = ""
|
209 |
+
images, names = [], []
|
210 |
+
for path in docs:
|
211 |
if local_ocr:
|
212 |
+
pdf = DocumentFile.from_pdf(path)
|
213 |
res = local_ocr(pdf)
|
214 |
+
all_text += result_to_text(res, as_text=True) + "\n\n"
|
215 |
else:
|
216 |
+
all_text += (PdfReader(path).pages[0].extract_text() or "") + "\n\n"
|
217 |
|
218 |
if include_images == "Include Images":
|
219 |
+
imgs = extract_images([path])
|
220 |
images.extend(imgs)
|
221 |
+
names.extend([os.path.basename(path)] * len(imgs))
|
222 |
|
223 |
+
# 5) Build + persist the vectordb
|
224 |
progress(0.6, "Indexing in vector DB…")
|
225 |
+
client = get_vectordb(all_text, images, names)
|
226 |
+
|
227 |
+
# 6) Mark session and return UI outputs
|
228 |
+
session["processed"] = True
|
229 |
+
session["persist_directory"] = PERSIST_DIR
|
230 |
+
sample_imgs = images[:4] if include_images == "Include Images" else []
|
231 |
+
|
232 |
+
return (
|
233 |
+
session, # gr.State
|
234 |
+
all_text[:2000] + "...",
|
235 |
+
sample_imgs,
|
236 |
+
"<h3>Done!</h3>"
|
237 |
+
)
|
238 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
239 |
|
|
|
|
|
|
|
|
|
240 |
|
|
|
|
|
|
|
|
|
241 |
|
242 |
+
# Chat function
|
243 |
+
def conversation(
|
244 |
+
session: dict,
|
245 |
+
question: str,
|
246 |
+
num_ctx: int,
|
247 |
+
img_ctx: int,
|
248 |
+
history: list,
|
249 |
+
temp: float,
|
250 |
+
max_tok: int,
|
251 |
+
model_id: str
|
252 |
+
):
|
253 |
+
pd = session.get("persist_directory")
|
254 |
+
if not session.get("processed") or not pd:
|
255 |
raise gr.Error("Please extract data first")
|
256 |
|
257 |
+
# 1) Reopen the same persistent client (new API)
|
258 |
+
client = chromadb.PersistentClient(
|
259 |
+
path=pd,
|
260 |
+
settings=Settings(),
|
261 |
+
tenant=DEFAULT_TENANT,
|
262 |
+
database=DEFAULT_DATABASE
|
263 |
+
)
|
264 |
+
|
265 |
|
266 |
+
# 2) Text retrieval
|
267 |
+
text_col = client.get_collection("text_db")
|
268 |
+
docs = text_col.query(query_texts=[question],
|
269 |
+
n_results=int(num_ctx),
|
270 |
+
include=["documents"])["documents"][0]
|
271 |
+
|
272 |
+
# 3) Image retrieval
|
273 |
+
img_col = client.get_collection("image_db")
|
274 |
+
img_q = img_col.query(query_texts=[question],
|
275 |
+
n_results=int(img_ctx),
|
276 |
+
include=["metadatas","documents"])
|
277 |
img_descs = img_q["documents"][0] or ["No images found"]
|
278 |
images = []
|
279 |
+
for meta in img_q["metadatas"][0]:
|
280 |
+
b64 = meta.get("image","")
|
281 |
+
try:
|
282 |
+
images.append(Image.open(io.BytesIO(base64.b64decode(b64))))
|
283 |
+
except:
|
284 |
+
pass
|
285 |
img_desc = "\n".join(img_descs)
|
286 |
|
287 |
+
# 4) Build prompt & call LLM
|
288 |
+
llm = HuggingFaceEndpoint(
|
289 |
+
repo_id=model_id,
|
290 |
+
task="text-generation",
|
291 |
+
temperature=temp,
|
292 |
+
max_new_tokens=max_tok,
|
293 |
+
huggingfacehub_api_token=HF_TOKEN
|
294 |
+
)
|
295 |
+
|
296 |
prompt = PromptTemplate(
|
297 |
template="""
|
298 |
Context:
|
|
|
305 |
{q}
|
306 |
|
307 |
Answer:
|
308 |
+
""", input_variables=["text","img_desc","q"]
|
309 |
+
)
|
310 |
inp = prompt.format(text="\n\n".join(docs), img_desc=img_desc, q=question)
|
311 |
|
312 |
+
try:
|
313 |
+
answer = llm.invoke(inp)
|
|
|
|
|
|
|
|
|
314 |
except HfHubHTTPError as e:
|
315 |
+
answer = "❌ Model not hosted" if e.response.status_code==404 else f"⚠️ HF error: {e}"
|
316 |
except Exception as e:
|
317 |
+
answer = f"⚠️ Unexpected error: {e}"
|
318 |
+
|
319 |
+
new_history = history + [
|
320 |
+
{"role":"user", "content":question},
|
321 |
+
{"role":"assistant","content":answer}
|
322 |
+
]
|
323 |
+
return new_history, docs, images
|
324 |
|
|
|
|
|
|
|
325 |
|
326 |
|
327 |
|
|
|
409 |
)
|
410 |
|
411 |
if __name__ == "__main__":
|
412 |
+
demo.launch()
|