Spaces:
Running
on
Zero
Running
on
Zero
from datetime import datetime | |
import gradio as gr | |
import spaces | |
import torch | |
from diffusers import FluxPipeline | |
from optimization import optimize_pipeline_ | |
pipeline = FluxPipeline.from_pretrained('black-forest-labs/FLUX.1-dev', torch_dtype=torch.bfloat16).to('cuda') | |
optimize_pipeline_(pipeline, "prompt") | |
def generate_image(prompt: str, progress=gr.Progress(track_tqdm=True)): | |
generator = torch.Generator(device='cuda').manual_seed(42) | |
t0 = datetime.now() | |
output = pipeline( | |
prompt=prompt, | |
num_inference_steps=28, | |
generator=generator, | |
) | |
return [(output.images[0], f'{(datetime.now() - t0).total_seconds():.2f}s')] | |
gr.Interface( | |
fn=generate_image, | |
inputs=gr.Text(label="Prompt"), | |
outputs=gr.Gallery(), | |
examples=["A cat playing with a ball of yarn"], | |
cache_examples=False, | |
).launch() | |