Spaces:
Running
on
Zero
Running
on
Zero
import inspect | |
import os | |
from typing import Union | |
import PIL | |
import numpy as np | |
import torch | |
import tqdm | |
from accelerate import load_checkpoint_in_model | |
from diffusers import AutoencoderKL, DDIMScheduler, UNet2DConditionModel | |
from diffusers.pipelines.stable_diffusion.safety_checker import \ | |
StableDiffusionSafetyChecker | |
from diffusers.utils.torch_utils import randn_tensor | |
from huggingface_hub import snapshot_download | |
from transformers import CLIPImageProcessor | |
from model.attn_processor import SkipAttnProcessor | |
from model.utils import get_trainable_module, init_adapter | |
from utils import (compute_vae_encodings, numpy_to_pil, prepare_image, | |
prepare_mask_image, resize_and_crop, resize_and_padding) | |
class CatVTONPipeline: | |
def __init__( | |
self, | |
base_ckpt, | |
attn_ckpt, | |
attn_ckpt_version="mix", | |
weight_dtype=torch.float32, | |
device='cuda', | |
compile=False, | |
skip_safety_check=False, | |
use_tf32=True, | |
): | |
self.device = device | |
self.weight_dtype = weight_dtype | |
self.skip_safety_check = skip_safety_check | |
self.noise_scheduler = DDIMScheduler.from_pretrained(base_ckpt, subfolder="scheduler") | |
self.vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse").to(device, dtype=weight_dtype) | |
if not skip_safety_check: | |
self.feature_extractor = CLIPImageProcessor.from_pretrained(base_ckpt, subfolder="feature_extractor") | |
self.safety_checker = StableDiffusionSafetyChecker.from_pretrained(base_ckpt, subfolder="safety_checker").to(device, dtype=weight_dtype) | |
self.unet = UNet2DConditionModel.from_pretrained(base_ckpt, subfolder="unet").to(device, dtype=weight_dtype) | |
init_adapter(self.unet, cross_attn_cls=SkipAttnProcessor) # Skip Cross-Attention | |
self.attn_modules = get_trainable_module(self.unet, "attention") | |
self.auto_attn_ckpt_load(attn_ckpt, attn_ckpt_version) | |
# Pytorch 2.0 Compile | |
if compile: | |
self.unet = torch.compile(self.unet) | |
self.vae = torch.compile(self.vae, mode="reduce-overhead") | |
# Enable TF32 for faster training on Ampere GPUs (A100 and RTX 30 series). | |
if use_tf32: | |
torch.set_float32_matmul_precision("high") | |
torch.backends.cuda.matmul.allow_tf32 = True | |
def auto_attn_ckpt_load(self, attn_ckpt, version): | |
sub_folder = { | |
"mix": "mix-48k-1024", | |
"vitonhd": "vitonhd-16k-512", | |
"dresscode": "dresscode-16k-512", | |
}[version] | |
if os.path.exists(attn_ckpt): | |
load_checkpoint_in_model(self.attn_modules, os.path.join(attn_ckpt, sub_folder, 'attention')) | |
else: | |
repo_path = snapshot_download(repo_id=attn_ckpt) | |
print(f"Downloaded {attn_ckpt} to {repo_path}") | |
load_checkpoint_in_model(self.attn_modules, os.path.join(repo_path, sub_folder, 'attention')) | |
def run_safety_checker(self, image): | |
if self.safety_checker is None: | |
has_nsfw_concept = None | |
else: | |
safety_checker_input = self.feature_extractor(image, return_tensors="pt").to(self.device) | |
image, has_nsfw_concept = self.safety_checker( | |
images=image, clip_input=safety_checker_input.pixel_values.to(self.weight_dtype) | |
) | |
return image, has_nsfw_concept | |
def check_inputs(self, image, condition_image, mask, width, height): | |
if isinstance(image, torch.Tensor) and isinstance(condition_image, torch.Tensor) and isinstance(mask, torch.Tensor): | |
return image, condition_image, mask | |
assert image.size == mask.size, "Image and mask must have the same size" | |
image = resize_and_crop(image, (width, height)) | |
mask = resize_and_crop(mask, (width, height)) | |
condition_image = resize_and_padding(condition_image, (width, height)) | |
return image, condition_image, mask | |
def prepare_extra_step_kwargs(self, generator, eta): | |
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
# and should be between [0, 1] | |
accepts_eta = "eta" in set( | |
inspect.signature(self.noise_scheduler.step).parameters.keys() | |
) | |
extra_step_kwargs = {} | |
if accepts_eta: | |
extra_step_kwargs["eta"] = eta | |
# check if the scheduler accepts generator | |
accepts_generator = "generator" in set( | |
inspect.signature(self.noise_scheduler.step).parameters.keys() | |
) | |
if accepts_generator: | |
extra_step_kwargs["generator"] = generator | |
return extra_step_kwargs | |
def __call__( | |
self, | |
image: Union[PIL.Image.Image, torch.Tensor], | |
condition_image: Union[PIL.Image.Image, torch.Tensor], | |
mask: Union[PIL.Image.Image, torch.Tensor], | |
num_inference_steps: int = 50, | |
guidance_scale: float = 2.5, | |
height: int = 1024, | |
width: int = 768, | |
generator=None, | |
eta=1.0, | |
**kwargs | |
): | |
concat_dim = -2 # FIXME: y axis concat | |
# Prepare inputs to Tensor | |
image, condition_image, mask = self.check_inputs(image, condition_image, mask, width, height) | |
image = prepare_image(image).to(self.device, dtype=self.weight_dtype) | |
condition_image = prepare_image(condition_image).to(self.device, dtype=self.weight_dtype) | |
mask = prepare_mask_image(mask).to(self.device, dtype=self.weight_dtype) | |
# Mask image | |
masked_image = image * (mask < 0.5) | |
# VAE encoding | |
masked_latent = compute_vae_encodings(masked_image, self.vae) | |
condition_latent = compute_vae_encodings(condition_image, self.vae) | |
mask_latent = torch.nn.functional.interpolate(mask, size=masked_latent.shape[-2:], mode="nearest") | |
del image, mask, condition_image | |
# Concatenate latents | |
masked_latent_concat = torch.cat([masked_latent, condition_latent], dim=concat_dim) | |
mask_latent_concat = torch.cat([mask_latent, torch.zeros_like(mask_latent)], dim=concat_dim) | |
# Prepare noise | |
latents = randn_tensor( | |
masked_latent_concat.shape, | |
generator=generator, | |
device=masked_latent_concat.device, | |
dtype=self.weight_dtype, | |
) | |
# Prepare timesteps | |
self.noise_scheduler.set_timesteps(num_inference_steps, device=self.device) | |
timesteps = self.noise_scheduler.timesteps | |
latents = latents * self.noise_scheduler.init_noise_sigma | |
# Classifier-Free Guidance | |
if do_classifier_free_guidance := (guidance_scale > 1.0): | |
masked_latent_concat = torch.cat( | |
[ | |
torch.cat([masked_latent, torch.zeros_like(condition_latent)], dim=concat_dim), | |
masked_latent_concat, | |
] | |
) | |
mask_latent_concat = torch.cat([mask_latent_concat] * 2) | |
# Denoising loop | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
num_warmup_steps = (len(timesteps) - num_inference_steps * self.noise_scheduler.order) | |
with tqdm.tqdm(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# expand the latents if we are doing classifier free guidance | |
non_inpainting_latent_model_input = (torch.cat([latents] * 2) if do_classifier_free_guidance else latents) | |
non_inpainting_latent_model_input = self.noise_scheduler.scale_model_input(non_inpainting_latent_model_input, t) | |
# prepare the input for the inpainting model | |
inpainting_latent_model_input = torch.cat([non_inpainting_latent_model_input, mask_latent_concat, masked_latent_concat], dim=1) | |
# predict the noise residual | |
noise_pred= self.unet( | |
inpainting_latent_model_input, | |
t.to(self.device), | |
encoder_hidden_states=None, # FIXME | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * ( | |
noise_pred_text - noise_pred_uncond | |
) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.noise_scheduler.step( | |
noise_pred, t, latents, **extra_step_kwargs | |
).prev_sample | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ( | |
(i + 1) > num_warmup_steps | |
and (i + 1) % self.noise_scheduler.order == 0 | |
): | |
progress_bar.update() | |
# Decode the final latents | |
latents = latents.split(latents.shape[concat_dim] // 2, dim=concat_dim)[0] | |
latents = 1 / self.vae.config.scaling_factor * latents | |
image = self.vae.decode(latents.to(self.device, dtype=self.weight_dtype)).sample | |
image = (image / 2 + 0.5).clamp(0, 1) | |
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
image = image.cpu().permute(0, 2, 3, 1).float().numpy() | |
image = numpy_to_pil(image) | |
# Safety Check | |
if not self.skip_safety_check: | |
current_script_directory = os.path.dirname(os.path.realpath(__file__)) | |
nsfw_image = os.path.join(os.path.dirname(current_script_directory), 'resource', 'img', 'NSFW.jpg') | |
nsfw_image = PIL.Image.open(nsfw_image).resize(image[0].size) | |
image_np = np.array(image) | |
_, has_nsfw_concept = self.run_safety_checker(image=image_np) | |
for i, not_safe in enumerate(has_nsfw_concept): | |
if not_safe: | |
image[i] = nsfw_image | |
return image | |