Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update: Remove unused model
Browse files- lib/bert_regressor.py +1 -43
- lib/bert_regressor_utils.py +10 -20
lib/bert_regressor.py
CHANGED
|
@@ -71,46 +71,4 @@ class BertMultiHeadRegressor(nn.Module):
|
|
| 71 |
pooled = self._pool(outputs, attention_mask) # [B, H]
|
| 72 |
pooled = self.dropout(pooled)
|
| 73 |
preds = [head(pooled) for head in self.heads] # n × [B, 1]
|
| 74 |
-
return torch.cat(preds, dim=1) # [B, n_heads]
|
| 75 |
-
|
| 76 |
-
###################################################################################
|
| 77 |
-
|
| 78 |
-
class BertBinaryClassifier(nn.Module):
|
| 79 |
-
def __init__(self, pretrained_model_name='bert-base-uncased', unfreeze_from=8, dropout=0.3):
|
| 80 |
-
super(BertBinaryClassifier, self).__init__()
|
| 81 |
-
|
| 82 |
-
# BERT-Encoder laden
|
| 83 |
-
self.bert = BertModel.from_pretrained(pretrained_model_name)
|
| 84 |
-
|
| 85 |
-
# Alle Layer zunächst einfrieren
|
| 86 |
-
for param in self.bert.parameters():
|
| 87 |
-
param.requires_grad = False
|
| 88 |
-
|
| 89 |
-
# Höhere Layer freigeben → feineres Fine-Tuning ab `unfreeze_from`
|
| 90 |
-
for layer in self.bert.encoder.layer[unfreeze_from:]:
|
| 91 |
-
for param in layer.parameters():
|
| 92 |
-
param.requires_grad = True
|
| 93 |
-
|
| 94 |
-
# Dropout-Schicht zur Regularisierung
|
| 95 |
-
self.dropout = nn.Dropout(dropout)
|
| 96 |
-
|
| 97 |
-
# Klassifikationskopf: Wandelt das 768-dimensionale BERT-Embedding
|
| 98 |
-
# in einen einzelnen logit-Wert um (für binäre Klassifikation).
|
| 99 |
-
self.classifier = nn.Linear(self.bert.config.hidden_size, 1)
|
| 100 |
-
|
| 101 |
-
def forward(self, input_ids, attention_mask):
|
| 102 |
-
# Eingabe durch BERT verarbeiten → [batch_size, 768]
|
| 103 |
-
outputs = self.bert(input_ids=input_ids, attention_mask=attention_mask)
|
| 104 |
-
|
| 105 |
-
# CLS-Token-Repräsentation extrahieren
|
| 106 |
-
pooled_output = outputs.pooler_output
|
| 107 |
-
|
| 108 |
-
# Dropout anwenden zur Regularisierung
|
| 109 |
-
dropped = self.dropout(pooled_output)
|
| 110 |
-
|
| 111 |
-
# Logits durch linearen Klassifikator erzeugen
|
| 112 |
-
logits = self.classifier(dropped)
|
| 113 |
-
|
| 114 |
-
# Rückgabe der rohen Logits
|
| 115 |
-
return logits
|
| 116 |
-
|
|
|
|
| 71 |
pooled = self._pool(outputs, attention_mask) # [B, H]
|
| 72 |
pooled = self.dropout(pooled)
|
| 73 |
preds = [head(pooled) for head in self.heads] # n × [B, 1]
|
| 74 |
+
return torch.cat(preds, dim=1) # [B, n_heads]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
lib/bert_regressor_utils.py
CHANGED
|
@@ -3,7 +3,7 @@ from transformers import AutoTokenizer
|
|
| 3 |
from torch.utils.data import Dataset
|
| 4 |
import numpy as np
|
| 5 |
|
| 6 |
-
from .bert_regressor import BertMultiHeadRegressor
|
| 7 |
|
| 8 |
###################################################################################
|
| 9 |
|
|
@@ -122,14 +122,13 @@ def tokenize_input(texts, tokenizer, max_len=256):
|
|
| 122 |
|
| 123 |
###################################################################################
|
| 124 |
|
| 125 |
-
def load_model_and_tokenizer(model_name, model_path
|
| 126 |
"""
|
| 127 |
-
|
| 128 |
|
| 129 |
Args:
|
| 130 |
model_name (str): Name des vortrainierten BERT-Modells (z. B. 'bert-base-uncased').
|
| 131 |
model_path (str): Pfad zur gespeicherten Modellzustandsdatei (.pt).
|
| 132 |
-
model_type (str): 'multihead' oder 'binary'. Default: 'multihead'.
|
| 133 |
|
| 134 |
Returns:
|
| 135 |
model (nn.Module): Geladenes Modell im Eval-Modus.
|
|
@@ -143,22 +142,13 @@ def load_model_and_tokenizer(model_name, model_path, model_type="multihead"):
|
|
| 143 |
checkpoint = torch.load(model_path, map_location=device)
|
| 144 |
config = checkpoint["model_config"]
|
| 145 |
|
| 146 |
-
# Modell
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
)
|
| 154 |
-
elif model_type == "binary":
|
| 155 |
-
model = BertBinaryClassifier(
|
| 156 |
-
pretrained_model_name=config["pretrained_model_name"],
|
| 157 |
-
unfreeze_from=config["unfreeze_from"],
|
| 158 |
-
dropout=config["dropout"]
|
| 159 |
-
)
|
| 160 |
-
else:
|
| 161 |
-
raise ValueError(f"Unbekannter model_type: {model_type}")
|
| 162 |
|
| 163 |
# Gewichtungen laden und Modell auf Gerät verschieben
|
| 164 |
model.to(device)
|
|
|
|
| 3 |
from torch.utils.data import Dataset
|
| 4 |
import numpy as np
|
| 5 |
|
| 6 |
+
from .bert_regressor import BertMultiHeadRegressor
|
| 7 |
|
| 8 |
###################################################################################
|
| 9 |
|
|
|
|
| 122 |
|
| 123 |
###################################################################################
|
| 124 |
|
| 125 |
+
def load_model_and_tokenizer(model_name, model_path):
|
| 126 |
"""
|
| 127 |
+
Ladefunktion für BertMultiHeadRegressor.
|
| 128 |
|
| 129 |
Args:
|
| 130 |
model_name (str): Name des vortrainierten BERT-Modells (z. B. 'bert-base-uncased').
|
| 131 |
model_path (str): Pfad zur gespeicherten Modellzustandsdatei (.pt).
|
|
|
|
| 132 |
|
| 133 |
Returns:
|
| 134 |
model (nn.Module): Geladenes Modell im Eval-Modus.
|
|
|
|
| 142 |
checkpoint = torch.load(model_path, map_location=device)
|
| 143 |
config = checkpoint["model_config"]
|
| 144 |
|
| 145 |
+
# Modell initialisieren
|
| 146 |
+
model = BertMultiHeadRegressor(
|
| 147 |
+
pretrained_model_name=config["pretrained_model_name"],
|
| 148 |
+
n_heads=config["n_heads"],
|
| 149 |
+
unfreeze_from=config["unfreeze_from"],
|
| 150 |
+
dropout=config["dropout"]
|
| 151 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
# Gewichtungen laden und Modell auf Gerät verschieben
|
| 154 |
model.to(device)
|