Spaces:
Running
Running
New: Load prediction model
Browse files
app.py
CHANGED
|
@@ -1,8 +1,10 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import fasttext
|
| 3 |
import html
|
| 4 |
import numpy as np
|
| 5 |
import types
|
|
|
|
| 6 |
from huggingface_hub import hf_hub_download
|
| 7 |
from safetensors.torch import load_file
|
| 8 |
from transformers import AutoTokenizer
|
|
@@ -19,6 +21,37 @@ from lib.bert_regressor_utils import (
|
|
| 19 |
|
| 20 |
### Stettings ####################################################################
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
##################################################################################
|
| 23 |
|
| 24 |
# offizielles Mirror-Repo mit lid.176.*
|
|
|
|
| 1 |
+
import os
|
| 2 |
import gradio as gr
|
| 3 |
import fasttext
|
| 4 |
import html
|
| 5 |
import numpy as np
|
| 6 |
import types
|
| 7 |
+
import torch
|
| 8 |
from huggingface_hub import hf_hub_download
|
| 9 |
from safetensors.torch import load_file
|
| 10 |
from transformers import AutoTokenizer
|
|
|
|
| 21 |
|
| 22 |
### Stettings ####################################################################
|
| 23 |
|
| 24 |
+
MODEL_BASE = "microsoft/deberta-v3-base"
|
| 25 |
+
REPO_ID = "ziem-io/deberta_flavour_regressor_multi_head"
|
| 26 |
+
FILENAME = "deberta_flavour_regressor_multi_head_20250914_1020.safetensors"
|
| 27 |
+
|
| 28 |
+
# (optional) falls das Model-Repo privat ist:
|
| 29 |
+
HF_TOKEN = os.getenv("HF_TOKEN") # in Space-Secrets hinterlegen
|
| 30 |
+
|
| 31 |
+
##################################################################################
|
| 32 |
+
|
| 33 |
+
# --- Download Weights ---
|
| 34 |
+
weights_path = hf_hub_download(
|
| 35 |
+
repo_id=REPO_ID,
|
| 36 |
+
filename=FILENAME,
|
| 37 |
+
token=HF_TOKEN
|
| 38 |
+
)
|
| 39 |
+
|
| 40 |
+
# --- Tokenizer (SentencePiece!) ---
|
| 41 |
+
tokenizer_flavours = AutoTokenizer.from_pretrained(
|
| 42 |
+
MODEL_BASE,
|
| 43 |
+
use_fast=False
|
| 44 |
+
)
|
| 45 |
+
|
| 46 |
+
model_flavours = BertMultiHeadRegressor(
|
| 47 |
+
pretrained_model_name=MODEL_BASE
|
| 48 |
+
)
|
| 49 |
+
state = load_file(weights_path) # safetensors -> dict[str, Tensor]
|
| 50 |
+
_ = model_flavours.load_state_dict(state, strict=False) # strict=True wenn Keys exakt passen
|
| 51 |
+
|
| 52 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 53 |
+
model_flavours.to(device).eval()
|
| 54 |
+
|
| 55 |
##################################################################################
|
| 56 |
|
| 57 |
# offizielles Mirror-Repo mit lid.176.*
|