File size: 1,326 Bytes
412c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
dataset_type = 'SynapseDataset'
data_root = 'data/synapse/'
img_scale = (224, 224)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations'),
    dict(type='Resize', scale=img_scale, keep_ratio=True),
    dict(type='RandomRotFlip', rotate_prob=0.5, flip_prob=0.5, degree=20),
    dict(type='PackSegInputs')
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='Resize', scale=img_scale, keep_ratio=True),
    dict(type='LoadAnnotations'),
    dict(type='PackSegInputs')
]
train_dataloader = dict(
    batch_size=6,
    num_workers=2,
    persistent_workers=True,
    sampler=dict(type='InfiniteSampler', shuffle=True),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        data_prefix=dict(
            img_path='img_dir/train', seg_map_path='ann_dir/train'),
        pipeline=train_pipeline))
val_dataloader = dict(
    batch_size=1,
    num_workers=4,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        data_prefix=dict(img_path='img_dir/val', seg_map_path='ann_dir/val'),
        pipeline=test_pipeline))
test_dataloader = val_dataloader

val_evaluator = dict(type='IoUMetric', iou_metrics=['mDice'])
test_evaluator = val_evaluator