File size: 3,085 Bytes
412c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
# model settings
backbone_norm_cfg = dict(type='LN', eps=1e-6, requires_grad=True)
norm_cfg = dict(type='SyncBN', requires_grad=True)
data_preprocessor = dict(
    type='SegDataPreProcessor',
    mean=[123.675, 116.28, 103.53],
    std=[58.395, 57.12, 57.375],
    bgr_to_rgb=True,
    pad_val=0,
    seg_pad_val=255)
model = dict(
    type='EncoderDecoder',
    data_preprocessor=data_preprocessor,
    pretrained='pretrain/jx_vit_large_p16_384-b3be5167.pth',
    backbone=dict(
        type='VisionTransformer',
        img_size=(768, 768),
        patch_size=16,
        in_channels=3,
        embed_dims=1024,
        num_layers=24,
        num_heads=16,
        out_indices=(5, 11, 17, 23),
        drop_rate=0.1,
        norm_cfg=backbone_norm_cfg,
        with_cls_token=False,
        interpolate_mode='bilinear',
    ),
    neck=dict(
        type='MLANeck',
        in_channels=[1024, 1024, 1024, 1024],
        out_channels=256,
        norm_cfg=norm_cfg,
        act_cfg=dict(type='ReLU'),
    ),
    decode_head=dict(
        type='SETRMLAHead',
        in_channels=(256, 256, 256, 256),
        channels=512,
        in_index=(0, 1, 2, 3),
        dropout_ratio=0,
        mla_channels=128,
        num_classes=19,
        norm_cfg=norm_cfg,
        align_corners=False,
        loss_decode=dict(
            type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
    auxiliary_head=[
        dict(
            type='FCNHead',
            in_channels=256,
            channels=256,
            in_index=0,
            dropout_ratio=0,
            num_convs=0,
            kernel_size=1,
            concat_input=False,
            num_classes=19,
            align_corners=False,
            loss_decode=dict(
                type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
        dict(
            type='FCNHead',
            in_channels=256,
            channels=256,
            in_index=1,
            dropout_ratio=0,
            num_convs=0,
            kernel_size=1,
            concat_input=False,
            num_classes=19,
            align_corners=False,
            loss_decode=dict(
                type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
        dict(
            type='FCNHead',
            in_channels=256,
            channels=256,
            in_index=2,
            dropout_ratio=0,
            num_convs=0,
            kernel_size=1,
            concat_input=False,
            num_classes=19,
            align_corners=False,
            loss_decode=dict(
                type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
        dict(
            type='FCNHead',
            in_channels=256,
            channels=256,
            in_index=3,
            dropout_ratio=0,
            num_convs=0,
            kernel_size=1,
            concat_input=False,
            num_classes=19,
            align_corners=False,
            loss_decode=dict(
                type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
    ],
    train_cfg=dict(),
    test_cfg=dict(mode='whole'))