File size: 14,151 Bytes
412c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# ANN

> [Asymmetric Non-local Neural Networks for Semantic Segmentation](https://arxiv.org/abs/1908.07678)

## Introduction

<!-- [ALGORITHM] -->

<a href="https://github.com/MendelXu/ANN">Official Repo</a>

<a href="https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ann_head.py#L185">Code Snippet</a>

## Abstract

<!-- [ABSTRACT] -->

The non-local module works as a particularly useful technique for semantic segmentation while criticized for its prohibitive computation and GPU memory occupation. In this paper, we present Asymmetric Non-local Neural Network to semantic segmentation, which has two prominent components: Asymmetric Pyramid Non-local Block (APNB) and Asymmetric Fusion Non-local Block (AFNB). APNB leverages a pyramid sampling module into the non-local block to largely reduce the computation and memory consumption without sacrificing the performance. AFNB is adapted from APNB to fuse the features of different levels under a sufficient consideration of long range dependencies and thus considerably improves the performance. Extensive experiments on semantic segmentation benchmarks demonstrate the effectiveness and efficiency of our work. In particular, we report the state-of-the-art performance of 81.3 mIoU on the Cityscapes test set. For a 256x128 input, APNB is around 6 times faster than a non-local block on GPU while 28 times smaller in GPU running memory occupation. Code is available at: [this https URL](https://github.com/MendelXu/ANN).

<!-- [IMAGE] -->

<div align=center>
<img src="https://user-images.githubusercontent.com/24582831/142898322-3bbd578c-e488-4bae-9c14-7598adac5cbd.png" width="70%"/>
</div>

## Results and models

### Cityscapes

| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                                   | download                                                                                                                                                                                                                                                                                                                               |
| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| ANN    | R-50-D8  | 512x1024  |   40000 | 6        | 3.71           | V100   | 77.40 |         78.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ann/ann_r50-d8_4xb2-40k_cityscapes-512x1024.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x1024_40k_cityscapes/ann_r50-d8_512x1024_40k_cityscapes_20200605_095211-049fc292.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x1024_40k_cityscapes/ann_r50-d8_512x1024_40k_cityscapes_20200605_095211.log.json)     |
| ANN    | R-101-D8 | 512x1024  |   40000 | 9.5      | 2.55           | V100   | 76.55 |         78.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ann/ann_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x1024_40k_cityscapes/ann_r101-d8_512x1024_40k_cityscapes_20200605_095243-adf6eece.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x1024_40k_cityscapes/ann_r101-d8_512x1024_40k_cityscapes_20200605_095243.log.json) |
| ANN    | R-50-D8  | 769x769   |   40000 | 6.8      | 1.70           | V100   | 78.89 |         80.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ann/ann_r50-d8_4xb2-40k_cityscapes-769x769.py)   | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_769x769_40k_cityscapes/ann_r50-d8_769x769_40k_cityscapes_20200530_025712-2b46b04d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_769x769_40k_cityscapes/ann_r50-d8_769x769_40k_cityscapes_20200530_025712.log.json)         |
| ANN    | R-101-D8 | 769x769   |   40000 | 10.7     | 1.15           | V100   | 79.32 |         80.94 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ann/ann_r101-d8_4xb2-40k_cityscapes-769x769.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_769x769_40k_cityscapes/ann_r101-d8_769x769_40k_cityscapes_20200530_025720-059bff28.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_769x769_40k_cityscapes/ann_r101-d8_769x769_40k_cityscapes_20200530_025720.log.json)     |
| ANN    | R-50-D8  | 512x1024  |   80000 | -        | -              | V100   | 77.34 |         78.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ann/ann_r50-d8_4xb2-80k_cityscapes-512x1024.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x1024_80k_cityscapes/ann_r50-d8_512x1024_80k_cityscapes_20200607_101911-5a9ad545.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x1024_80k_cityscapes/ann_r50-d8_512x1024_80k_cityscapes_20200607_101911.log.json)     |
| ANN    | R-101-D8 | 512x1024  |   80000 | -        | -              | V100   | 77.14 |         78.81 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ann/ann_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x1024_80k_cityscapes/ann_r101-d8_512x1024_80k_cityscapes_20200607_013728-aceccc6e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x1024_80k_cityscapes/ann_r101-d8_512x1024_80k_cityscapes_20200607_013728.log.json) |
| ANN    | R-50-D8  | 769x769   |   80000 | -        | -              | V100   | 78.88 |         80.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ann/ann_r50-d8_4xb2-80k_cityscapes-769x769.py)   | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_769x769_80k_cityscapes/ann_r50-d8_769x769_80k_cityscapes_20200607_044426-cc7ff323.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_769x769_80k_cityscapes/ann_r50-d8_769x769_80k_cityscapes_20200607_044426.log.json)         |
| ANN    | R-101-D8 | 769x769   |   80000 | -        | -              | V100   | 78.80 |         80.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ann/ann_r101-d8_4xb2-80k_cityscapes-769x769.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_769x769_80k_cityscapes/ann_r101-d8_769x769_80k_cityscapes_20200607_013713-a9d4be8d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_769x769_80k_cityscapes/ann_r101-d8_769x769_80k_cityscapes_20200607_013713.log.json)     |

### ADE20K

| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                               | download                                                                                                                                                                                                                                                                                                               |
| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| ANN    | R-50-D8  | 512x512   |   80000 | 9.1      | 21.01          | V100   | 41.01 |         42.30 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ann/ann_r50-d8_4xb4-80k_ade20k-512x512.py)   | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_80k_ade20k/ann_r50-d8_512x512_80k_ade20k_20200615_014818-26f75e11.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_80k_ade20k/ann_r50-d8_512x512_80k_ade20k_20200615_014818.log.json)         |
| ANN    | R-101-D8 | 512x512   |   80000 | 12.5     | 14.12          | V100   | 42.94 |         44.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ann/ann_r101-d8_4xb4-80k_ade20k-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_80k_ade20k/ann_r101-d8_512x512_80k_ade20k_20200615_014818-c0153543.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_80k_ade20k/ann_r101-d8_512x512_80k_ade20k_20200615_014818.log.json)     |
| ANN    | R-50-D8  | 512x512   |  160000 | -        | -              | V100   | 41.74 |         42.62 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ann/ann_r50-d8_4xb4-160k_ade20k-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_160k_ade20k/ann_r50-d8_512x512_160k_ade20k_20200615_231733-892247bc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_160k_ade20k/ann_r50-d8_512x512_160k_ade20k_20200615_231733.log.json)     |
| ANN    | R-101-D8 | 512x512   |  160000 | -        | -              | V100   | 42.94 |         44.06 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ann/ann_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_160k_ade20k/ann_r101-d8_512x512_160k_ade20k_20200615_231733-955eb1ec.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_160k_ade20k/ann_r101-d8_512x512_160k_ade20k_20200615_231733.log.json) |

### Pascal VOC 2012 + Aug

| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                                | download                                                                                                                                                                                                                                                                                                                   |
| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| ANN    | R-50-D8  | 512x512   |   20000 | 6        | 20.92          | V100   | 74.86 |         76.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ann/ann_r50-d8_4xb4-20k_voc12aug-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_20k_voc12aug/ann_r50-d8_512x512_20k_voc12aug_20200617_222246-dfcb1c62.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_20k_voc12aug/ann_r50-d8_512x512_20k_voc12aug_20200617_222246.log.json)     |
| ANN    | R-101-D8 | 512x512   |   20000 | 9.5      | 13.94          | V100   | 77.47 |         78.70 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ann/ann_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_20k_voc12aug/ann_r101-d8_512x512_20k_voc12aug_20200617_222246-2fad0042.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_20k_voc12aug/ann_r101-d8_512x512_20k_voc12aug_20200617_222246.log.json) |
| ANN    | R-50-D8  | 512x512   |   40000 | -        | -              | V100   | 76.56 |         77.51 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ann/ann_r50-d8_4xb4-40k_voc12aug-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_40k_voc12aug/ann_r50-d8_512x512_40k_voc12aug_20200613_231314-b5dac322.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r50-d8_512x512_40k_voc12aug/ann_r50-d8_512x512_40k_voc12aug_20200613_231314.log.json)     |
| ANN    | R-101-D8 | 512x512   |   40000 | -        | -              | V100   | 76.70 |         78.06 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ann/ann_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_40k_voc12aug/ann_r101-d8_512x512_40k_voc12aug_20200613_231314-bd205bbe.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ann/ann_r101-d8_512x512_40k_voc12aug/ann_r101-d8_512x512_40k_voc12aug_20200613_231314.log.json) |

## Citation

```bibtex
@inproceedings{zhu2019asymmetric,
  title={Asymmetric non-local neural networks for semantic segmentation},
  author={Zhu, Zhen and Xu, Mengde and Bai, Song and Huang, Tengteng and Bai, Xiang},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={593--602},
  year={2019}
}
```