Spaces:
Runtime error
Runtime error
File size: 4,871 Bytes
412c852 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 |
Collections:
- Name: BiSeNetV2
License: Apache License 2.0
Metadata:
Training Data:
- Cityscapes
Paper:
Title: 'Bisenet v2: Bilateral Network with Guided Aggregation for Real-time Semantic
Segmentation'
URL: https://arxiv.org/abs/2004.02147
README: configs/bisenetv2/README.md
Frameworks:
- PyTorch
Models:
- Name: bisenetv2_fcn_4xb4-160k_cityscapes-1024x1024
In Collection: BiSeNetV2
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 73.21
mIoU(ms+flip): 75.74
Config: configs/bisenetv2/bisenetv2_fcn_4xb4-160k_cityscapes-1024x1024.py
Metadata:
Training Data: Cityscapes
Batch Size: 16
Architecture:
- BiSeNetV2
- BiSeNetV2
Training Resources: 4x V100 GPUS
Memory (GB): 7.64
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes_20210902_015551-bcf10f09.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_4x4_1024x1024_160k_cityscapes_20210902_015551.log.json
Paper:
Title: 'Bisenet v2: Bilateral Network with Guided Aggregation for Real-time Semantic
Segmentation'
URL: https://arxiv.org/abs/2004.02147
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv2.py#L545
Framework: PyTorch
- Name: bisenetv2_fcn_4xb4-ohem-160k_cityscapes-1024x1024
In Collection: BiSeNetV2
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 73.57
mIoU(ms+flip): 75.8
Config: configs/bisenetv2/bisenetv2_fcn_4xb4-ohem-160k_cityscapes-1024x1024.py
Metadata:
Training Data: Cityscapes
Batch Size: 16
Architecture:
- BiSeNetV2
- BiSeNetV2
Training Resources: 4x V100 GPUS
Memory (GB): 7.64
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes_20210902_112947-5f8103b4.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_ohem_4x4_1024x1024_160k_cityscapes_20210902_112947.log.json
Paper:
Title: 'Bisenet v2: Bilateral Network with Guided Aggregation for Real-time Semantic
Segmentation'
URL: https://arxiv.org/abs/2004.02147
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv2.py#L545
Framework: PyTorch
- Name: bisenetv2_fcn_4xb8-160k_cityscapes-1024x1024
In Collection: BiSeNetV2
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 75.76
mIoU(ms+flip): 77.79
Config: configs/bisenetv2/bisenetv2_fcn_4xb8-160k_cityscapes-1024x1024.py
Metadata:
Training Data: Cityscapes
Batch Size: 32
Architecture:
- BiSeNetV2
- BiSeNetV2
Training Resources: 4x V100 GPUS
Memory (GB): 15.05
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes_20210903_000032-e1a2eed6.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes/bisenetv2_fcn_4x8_1024x1024_160k_cityscapes_20210903_000032.log.json
Paper:
Title: 'Bisenet v2: Bilateral Network with Guided Aggregation for Real-time Semantic
Segmentation'
URL: https://arxiv.org/abs/2004.02147
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv2.py#L545
Framework: PyTorch
- Name: bisenetv2_fcn_4xb4-amp-160k_cityscapes-1024x1024
In Collection: BiSeNetV2
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 73.07
mIoU(ms+flip): 75.13
Config: configs/bisenetv2/bisenetv2_fcn_4xb4-amp-160k_cityscapes-1024x1024.py
Metadata:
Training Data: Cityscapes
Batch Size: 16
Architecture:
- BiSeNetV2
- BiSeNetV2
Training Resources: 4x V100 GPUS
Memory (GB): 5.77
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes_20210902_045942-b979777b.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/bisenetv2/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes/bisenetv2_fcn_fp16_4x4_1024x1024_160k_cityscapes_20210902_045942.log.json
Paper:
Title: 'Bisenet v2: Bilateral Network with Guided Aggregation for Real-time Semantic
Segmentation'
URL: https://arxiv.org/abs/2004.02147
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/backbones/bisenetv2.py#L545
Framework: PyTorch
|