File size: 44,313 Bytes
412c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# DeepLabV3+

> [Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation](https://arxiv.org/abs/1802.02611)

## Introduction

<!-- [ALGORITHM] -->

<a href="https://github.com/tensorflow/models/tree/master/research/deeplab">Official Repo</a>

<a href="https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/sep_aspp_head.py#L30">Code Snippet</a>

## Abstract

<!-- [ABSTRACT] -->

Spatial pyramid pooling module or encode-decoder structure are used in deep neural networks for semantic segmentation task. The former networks are able to encode multi-scale contextual information by probing the incoming features with filters or pooling operations at multiple rates and multiple effective fields-of-view, while the latter networks can capture sharper object boundaries by gradually recovering the spatial information. In this work, we propose to combine the advantages from both methods. Specifically, our proposed model, DeepLabv3+, extends DeepLabv3 by adding a simple yet effective decoder module to refine the segmentation results especially along object boundaries. We further explore the Xception model and apply the depthwise separable convolution to both Atrous Spatial Pyramid Pooling and decoder modules, resulting in a faster and stronger encoder-decoder network. We demonstrate the effectiveness of the proposed model on PASCAL VOC 2012 and Cityscapes datasets, achieving the test set performance of 89.0% and 82.1% without any post-processing. Our paper is accompanied with a publicly available reference implementation of the proposed models in Tensorflow at [this https URL](https://github.com/tensorflow/models/tree/master/research/deeplab).

<!-- [IMAGE] -->

<div align=center>
<img src="https://user-images.githubusercontent.com/24582831/142900680-3e2c3098-8341-4760-bbfd-b1d7d29968ea.png" width="70%"/>
</div>

## Results and models

### Cityscapes

| Method            | Backbone        | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                                                                      | download                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ----------------- | --------------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| DeepLabV3+        | R-50-D8         | 512x1024  |   40000 | 7.5      | 3.94           | V100   | 79.61 |         81.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-40k_cityscapes-512x1024.py)                 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes/deeplabv3plus_r50-d8_512x1024_40k_cityscapes_20200605_094610-d222ffcd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_40k_cityscapes/deeplabv3plus_r50-d8_512x1024_40k_cityscapes_20200605_094610.log.json)                                 |
| DeepLabV3+        | R-101-D8        | 512x1024  |   40000 | 11       | 2.60           | V100   | 80.21 |         81.82 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-40k_cityscapes-512x1024.py)                | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_40k_cityscapes/deeplabv3plus_r101-d8_512x1024_40k_cityscapes_20200605_094614-3769eecf.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_40k_cityscapes/deeplabv3plus_r101-d8_512x1024_40k_cityscapes_20200605_094614.log.json)                             |
| DeepLabV3+        | R-50-D8         | 769x769   |   40000 | 8.5      | 1.72           | V100   | 78.97 |         80.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-40k_cityscapes-769x769.py)                  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_40k_cityscapes/deeplabv3plus_r50-d8_769x769_40k_cityscapes_20200606_114143-1dcb0e3c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_40k_cityscapes/deeplabv3plus_r50-d8_769x769_40k_cityscapes_20200606_114143.log.json)                                     |
| DeepLabV3+        | R-101-D8        | 769x769   |   40000 | 12.5     | 1.15           | V100   | 79.46 |         80.50 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-40k_cityscapes-769x769.py)                 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_40k_cityscapes/deeplabv3plus_r101-d8_769x769_40k_cityscapes_20200606_114304-ff414b9e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_40k_cityscapes/deeplabv3plus_r101-d8_769x769_40k_cityscapes_20200606_114304.log.json)                                 |
| DeepLabV3+        | R-18-D8         | 512x1024  |   80000 | 2.2      | 14.27          | V100   | 76.89 |         78.76 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb2-80k_cityscapes-512x1024.py)                 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x1024_80k_cityscapes/deeplabv3plus_r18-d8_512x1024_80k_cityscapes_20201226_080942-cff257fe.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x1024_80k_cityscapes/deeplabv3plus_r18-d8_512x1024_80k_cityscapes-20201226_080942.log.json)                                 |
| DeepLabV3+        | R-50-D8         | 512x1024  |   80000 | -        | -              | V100   | 80.09 |         81.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-80k_cityscapes-512x1024.py)                 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes/deeplabv3plus_r50-d8_512x1024_80k_cityscapes_20200606_114049-f9fb496d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x1024_80k_cityscapes/deeplabv3plus_r50-d8_512x1024_80k_cityscapes_20200606_114049.log.json)                                 |
| DeepLabV3+        | R-101-D8        | 512x1024  |   80000 | -        | -              | V100   | 80.97 |         82.03 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-80k_cityscapes-512x1024.py)                | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143-068fcfe9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_512x1024_80k_cityscapes_20200606_114143.log.json)                             |
| DeepLabV3+ (FP16) | R-101-D8        | 512x1024  |   80000 | 6.35     | 7.87           | V100   | 80.46 |             - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py)            | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920-f1104f4b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes/deeplabv3plus_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230920.log.json)         |
| DeepLabV3+        | R-18-D8         | 769x769   |   80000 | 2.5      | 5.74           | V100   | 76.26 |         77.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb2-80k_cityscapes-769x769.py)                  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_769x769_80k_cityscapes/deeplabv3plus_r18-d8_769x769_80k_cityscapes_20201226_083346-f326e06a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_769x769_80k_cityscapes/deeplabv3plus_r18-d8_769x769_80k_cityscapes-20201226_083346.log.json)                                     |
| DeepLabV3+        | R-50-D8         | 769x769   |   80000 | -        | -              | V100   | 79.83 |         81.48 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-80k_cityscapes-769x769.py)                  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes/deeplabv3plus_r50-d8_769x769_80k_cityscapes_20200606_210233-0e9dfdc4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_769x769_80k_cityscapes/deeplabv3plus_r50-d8_769x769_80k_cityscapes_20200606_210233.log.json)                                     |
| DeepLabV3+        | R-101-D8        | 769x769   |   80000 | -        | -              | V100   | 80.65 |         81.47 | [config<sup>\[1\]</sup>](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb2-80k_cityscapes-769x769.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes/deeplabv3plus_r101-d8_769x769_80k_cityscapes_20220406_154720-dfcc0b68.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_769x769_80k_cityscapes/deeplabv3plus_r101-d8_769x769_80k_cityscapes_20220406_154720.log.json)                                 |
| DeepLabV3+        | R-101-D16-MG124 | 512x1024  |   40000 | 5.8      | 7.48           | V100   | 79.09 |         80.36 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/ddeeplabv3plus_r101-d16-mg124_4xb2-40k_cityscapes-512x1024.py)        | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes_20200908_005644-cf9ce186.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_40k_cityscapes-20200908_005644.log.json) |
| DeepLabV3+        | R-101-D16-MG124 | 512x1024  |   80000 | 9.9      | -              | V100   | 79.90 |         81.33 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r101-d16-mg124_4xb2-80k_cityscapes-512x1024.py)         | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes_20200908_005644-ee6158e0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes/deeplabv3plus_r101-d16-mg124_512x1024_80k_cityscapes-20200908_005644.log.json) |
| DeepLabV3+        | R-18b-D8        | 512x1024  |   80000 | 2.1      | 14.95          | V100   | 75.87 |         77.52 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r18b-d8_4xb2-80k_cityscapes-512x1024.py)                | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes_20201226_090828-e451abd9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes/deeplabv3plus_r18b-d8_512x1024_80k_cityscapes-20201226_090828.log.json)                             |
| DeepLabV3+        | R-50b-D8        | 512x1024  |   80000 | 7.4      | 3.94           | V100   | 80.28 |         81.44 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r50b-d8_4xb2-80k_cityscapes-512x1024.py)                | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes_20201225_213645-a97e4e43.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes/deeplabv3plus_r50b-d8_512x1024_80k_cityscapes-20201225_213645.log.json)                             |
| DeepLabV3+        | R-101b-D8       | 512x1024  |   80000 | 10.9     | 2.60           | V100   | 80.16 |         81.41 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r101b-d8_4xb2-80k_cityscapes-512x1024.py)               | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes_20201226_190843-9c3c93a4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes/deeplabv3plus_r101b-d8_512x1024_80k_cityscapes-20201226_190843.log.json)                         |
| DeepLabV3+        | R-18b-D8        | 769x769   |   80000 | 2.4      | 5.96           | V100   | 76.36 |         78.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r18b-d8_4xb2-80k_cityscapes-769x769.py)                 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_769x769_80k_cityscapes/deeplabv3plus_r18b-d8_769x769_80k_cityscapes_20201226_151312-2c868aff.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18b-d8_769x769_80k_cityscapes/deeplabv3plus_r18b-d8_769x769_80k_cityscapes-20201226_151312.log.json)                                 |
| DeepLabV3+        | R-50b-D8        | 769x769   |   80000 | 8.4      | 1.72           | V100   | 79.41 |         80.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r50b-d8_4xb2-80k_cityscapes-769x769.py)                 | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_769x769_80k_cityscapes/deeplabv3plus_r50b-d8_769x769_80k_cityscapes_20201225_224655-8b596d1c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50b-d8_769x769_80k_cityscapes/deeplabv3plus_r50b-d8_769x769_80k_cityscapes-20201225_224655.log.json)                                 |
| DeepLabV3+        | R-101b-D8       | 769x769   |   80000 | 12.3     | 1.10           | V100   | 79.88 |         81.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r101b-d8_4xb2-80k_cityscapes-769x769.py)                | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_769x769_80k_cityscapes/deeplabv3plus_r101b-d8_769x769_80k_cityscapes_20201226_205041-227cdf7c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101b-d8_769x769_80k_cityscapes/deeplabv3plus_r101b-d8_769x769_80k_cityscapes-20201226_205041.log.json)                             |

\[1\] The training of the model is sensitive to random seed, and the seed to train it is 1111.

### ADE20K

| Method     | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                                                   | download                                                                                                                                                                                                                                                                                                                                                                           |
| ---------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| DeepLabV3+ | R-50-D8  | 512x512   |   80000 | 10.6     | 21.01          | V100   | 42.72 |         43.75 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_ade20k-512x512.py)   | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_ade20k/deeplabv3plus_r50-d8_512x512_80k_ade20k_20200614_185028-bf1400d8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_ade20k/deeplabv3plus_r50-d8_512x512_80k_ade20k_20200614_185028.log.json)         |
| DeepLabV3+ | R-101-D8 | 512x512   |   80000 | 14.1     | 14.16          | V100   | 44.60 |         46.06 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_ade20k/deeplabv3plus_r101-d8_512x512_80k_ade20k_20200615_014139-d5730af7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_ade20k/deeplabv3plus_r101-d8_512x512_80k_ade20k_20200615_014139.log.json)     |
| DeepLabV3+ | R-50-D8  | 512x512   |  160000 | -        | -              | V100   | 43.95 |         44.93 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-160k_ade20k-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_160k_ade20k/deeplabv3plus_r50-d8_512x512_160k_ade20k_20200615_124504-6135c7e0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_160k_ade20k/deeplabv3plus_r50-d8_512x512_160k_ade20k_20200615_124504.log.json)     |
| DeepLabV3+ | R-101-D8 | 512x512   |  160000 | -        | -              | V100   | 45.47 |         46.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_160k_ade20k/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232-38ed86bb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_160k_ade20k/deeplabv3plus_r101-d8_512x512_160k_ade20k_20200615_123232.log.json) |

### Pascal VOC 2012 + Aug

| Method     | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                                                    | download                                                                                                                                                                                                                                                                                                                                                                               |
| ---------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| DeepLabV3+ | R-50-D8  | 512x512   |   20000 | 7.6      | 21             | V100   | 75.93 |         77.50 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-20k_voc12aug-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_20k_voc12aug/deeplabv3plus_r50-d8_512x512_20k_voc12aug_20200617_102323-aad58ef1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_20k_voc12aug/deeplabv3plus_r50-d8_512x512_20k_voc12aug_20200617_102323.log.json)     |
| DeepLabV3+ | R-101-D8 | 512x512   |   20000 | 11       | 13.88          | V100   | 77.22 |         78.59 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_20k_voc12aug/deeplabv3plus_r101-d8_512x512_20k_voc12aug_20200617_102345-c7ff3d56.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_20k_voc12aug/deeplabv3plus_r101-d8_512x512_20k_voc12aug_20200617_102345.log.json) |
| DeepLabV3+ | R-50-D8  | 512x512   |   40000 | -        | -              | V100   | 76.81 |         77.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-40k_voc12aug-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_40k_voc12aug/deeplabv3plus_r50-d8_512x512_40k_voc12aug_20200613_161759-e1b43aa9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_40k_voc12aug/deeplabv3plus_r50-d8_512x512_40k_voc12aug_20200613_161759.log.json)     |
| DeepLabV3+ | R-101-D8 | 512x512   |   40000 | -        | -              | V100   | 78.62 |         79.53 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_40k_voc12aug/deeplabv3plus_r101-d8_512x512_40k_voc12aug_20200613_205333-faf03387.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_40k_voc12aug/deeplabv3plus_r101-d8_512x512_40k_voc12aug_20200613_205333.log.json) |

### Pascal Context

| Method     | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                                                         | download                                                                                                                                                                                                                                                                                                                                                                                                       |
| ---------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| DeepLabV3+ | R-101-D8 | 480x480   |   40000 | -        | 9.09           | V100   | 47.30 |         48.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-40k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context/deeplabv3plus_r101-d8_480x480_40k_pascal_context_20200911_165459-d3c8a29e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context/deeplabv3plus_r101-d8_480x480_40k_pascal_context-20200911_165459.log.json) |
| DeepLabV3+ | R-101-D8 | 480x480   |   80000 | -        | -              | V100   | 47.23 |         48.26 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context/deeplabv3plus_r101-d8_480x480_80k_pascal_context_20200911_155322-145d3ee8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context/deeplabv3plus_r101-d8_480x480_80k_pascal_context-20200911_155322.log.json) |

### Pascal Context 59

| Method     | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                                                             | download                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ---------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| DeepLabV3+ | R-101-D8 | 480x480   |   40000 | -        | -              | V100   | 52.86 |         54.54 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-40k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59_20210416_111233-ed937f15.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59/deeplabv3plus_r101-d8_480x480_40k_pascal_context_59-20210416_111233.log.json) |
| DeepLabV3+ | R-101-D8 | 480x480   |   80000 | -        | -              | V100   |  53.2 |         54.67 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59_20210416_111127-7ca0331d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59/deeplabv3plus_r101-d8_480x480_80k_pascal_context_59-20210416_111127.log.json) |

### LoveDA

| Method     | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                                                  | download                                                                                                                                                                                                                                                                                                                                                                       |
| ---------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| DeepLabV3+ | R-18-D8  | 512x512   |   80000 | 1.93     | 25.57          | V100   | 50.28 |         50.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb4-80k_loveda-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_loveda/deeplabv3plus_r18-d8_512x512_80k_loveda_20211104_132800-ce0fa0ca.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_loveda/deeplabv3plus_r18-d8_512x512_80k_loveda_20211104_132800.log.json)     |
| DeepLabV3+ | R-50-D8  | 512x512   |   80000 | 7.37     | 6.00           | V100   | 50.99 |         50.65 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_loveda-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_loveda/deeplabv3plus_r50-d8_512x512_80k_loveda_20211105_080442-f0720392.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_loveda/deeplabv3plus_r50-d8_512x512_80k_loveda_20211105_080442.log.json)     |
| DeepLabV3+ | R-101-D8 | 512x512   |   80000 | 10.84    | 4.33           | V100   | 51.47 |         51.32 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_loveda-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_loveda/deeplabv3plus_r101-d8_512x512_80k_loveda_20211105_110759-4c1f297e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_loveda/deeplabv3plus_r101-d8_512x512_80k_loveda_20211105_110759.log.json) |

### Potsdam

| Method     | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                                                   | download                                                                                                                                                                                                                                                                                                                                                                           |
| ---------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| DeepLabV3+ | R-18-D8  | 512x512   |   80000 | 1.91     | 81.68          | V100   | 77.09 |         78.44 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb4-80k_potsdam-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_potsdam/deeplabv3plus_r18-d8_512x512_80k_potsdam_20211219_020601-75fd5bc3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_512x512_80k_potsdam/deeplabv3plus_r18-d8_512x512_80k_potsdam_20211219_020601.log.json)     |
| DeepLabV3+ | R-50-D8  | 512x512   |   80000 | 7.36     | 26.44          | V100   | 78.33 |         79.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_potsdam-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_potsdam/deeplabv3plus_r50-d8_512x512_80k_potsdam_20211219_031508-7e7a2b24.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_512x512_80k_potsdam/deeplabv3plus_r50-d8_512x512_80k_potsdam_20211219_031508.log.json)     |
| DeepLabV3+ | R-101-D8 | 512x512   |   80000 | 10.83    | 17.56          | V100   |  78.7 |         79.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_potsdam/deeplabv3plus_r101-d8_512x512_80k_potsdam_20211219_031508-8b112708.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_512x512_80k_potsdam/deeplabv3plus_r101-d8_512x512_80k_potsdam_20211219_031508.log.json) |

### Vaihingen

| Method     | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                                                     | download                                                                                                                                                                                                                                                                                                                                                                                                   |
| ---------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------------ | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| DeepLabV3+ | R-18-D8  | 512x512   |   80000 | 1.91     | 72.79          | V100   | 72.50 |         74.13 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb4-80k_vaihingen-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r18-d8_4x4_512x512_80k_vaihingen_20211231_230805-7626a263.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r18-d8_4x4_512x512_80k_vaihingen_20211231_230805.log.json)     |
| DeepLabV3+ | R-50-D8  | 512x512   |   80000 | 7.36     | 26.91          | V100   | 73.97 |         75.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_vaihingen-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r50-d8_4x4_512x512_80k_vaihingen_20211231_230816-5040938d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r50-d8_4x4_512x512_80k_vaihingen_20211231_230816.log.json)     |
| DeepLabV3+ | R-101-D8 | 512x512   |   80000 | 10.83    | 18.59          | V100   | 73.06 |         74.14 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r101-d8_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r101-d8_4x4_512x512_80k_vaihingen_20211231_230816-8a095afa.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r101-d8_4x4_512x512_80k_vaihingen/deeplabv3plus_r101-d8_4x4_512x512_80k_vaihingen_20211231_230816.log.json) |

### iSAID

| Method     | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                                                | download                                                                                                                                                                                                                                                                                                                                                                               |
| ---------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| DeepLabV3+ | R-18-D8  | 896x896   |   80000 | 6.19     | 24.81          | V100   | 61.35 |         62.61 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r18-d8_4xb4-80k_isaid-896x896.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_4x4_896x896_80k_isaid/deeplabv3plus_r18-d8_4x4_896x896_80k_isaid_20220110_180526-7059991d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r18-d8_4x4_896x896_80k_isaid/deeplabv3plus_r18-d8_4x4_896x896_80k_isaid_20220110_180526.log.json) |
| DeepLabV3+ | R-50-D8  | 896x896   |   80000 | 21.45    | 8.42           | V100   | 67.06 |         68.02 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb4-80k_isaid-896x896.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4x4_896x896_80k_isaid/deeplabv3plus_r50-d8_4x4_896x896_80k_isaid_20220110_180526-598be439.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4x4_896x896_80k_isaid/deeplabv3plus_r50-d8_4x4_896x896_80k_isaid_20220110_180526.log.json) |

### Mapillary Vistas v1.2

| Method     | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                                                            | download                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ---------- | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| DeepLabV3+ | R-50-D8  | 1280x1280 |  300000 | 24.04    | 17.92          | A100   | 47.35 |             - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-300k_mapillay_v1_65-1280x1280.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-300k_mapillay_v1_65-1280x1280/deeplabv3plus_r50-d8_4xb2-300k_mapillay_v1_65-1280x1280_20230301_110504-655f8e43.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/deeplabv3plus/deeplabv3plus_r50-d8_4xb2-300k_mapillay_v1_65-1280x1280/deeplabv3plus_r50-d8_4xb2-300k_mapillay_v1_65-1280x1280_20230301_110504.json) |

Note:

- `D-8`/`D-16` here corresponding to the output stride 8/16 setting for DeepLab series.
- `MG-124` stands for multi-grid dilation in the last stage of ResNet.
- `FP16` means Mixed Precision (FP16) is adopted in training.
- `896x896` is the Crop Size of iSAID dataset, which is followed by the implementation of [PointFlow: Flowing Semantics Through Points for Aerial Image Segmentation](https://arxiv.org/pdf/2103.06564.pdf)

## Citation

```bibtex
@inproceedings{deeplabv3plus2018,
  title={Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation},
  author={Liang-Chieh Chen and Yukun Zhu and George Papandreou and Florian Schroff and Hartwig Adam},
  booktitle={ECCV},
  year={2018}
}
```