File size: 32,988 Bytes
412c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# HRNet

> [Deep High-Resolution Representation Learning for Human Pose Estimation](https://arxiv.org/abs/1908.07919)

## Introduction

<!-- [BACKBONE] -->

<a href="https://github.com/HRNet/HRNet-Semantic-Segmentation">Official Repo</a>

<a href="https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/hrnet.py#L218">Code Snippet</a>

## Abstract

<!-- [ABSTRACT] -->

High-resolution representations are essential for position-sensitive vision problems, such as human pose estimation, semantic segmentation, and object detection. Existing state-of-the-art frameworks first encode the input image as a low-resolution representation through a subnetwork that is formed by connecting high-to-low resolution convolutions \\emph{in series} (e.g., ResNet, VGGNet), and then recover the high-resolution representation from the encoded low-resolution representation. Instead, our proposed network, named as High-Resolution Network (HRNet), maintains high-resolution representations through the whole process. There are two key characteristics: (i) Connect the high-to-low resolution convolution streams \\emph{in parallel}; (ii) Repeatedly exchange the information across resolutions. The benefit is that the resulting representation is semantically richer and spatially more precise. We show the superiority of the proposed HRNet in a wide range of applications, including human pose estimation, semantic segmentation, and object detection, suggesting that the HRNet is a stronger backbone for computer vision problems. All the codes are available at [this https URL](https://github.com/HRNet).

<!-- [IMAGE] -->

<div align=center>
<img src="https://user-images.githubusercontent.com/24582831/142901680-64c285bc-669f-4924-b054-46a2f07c5427.png" width="80%"/>
</div>

## Results and models

### Cityscapes

| Method | Backbone           | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                                    | download                                                                                                                                                                                                                                                                                                                               |
| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| FCN    | HRNetV2p-W18-Small | 512x1024  |   40000 | 1.7      | 23.74          | V100   | 73.86 |         75.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18s_4xb2-40k_cityscapes-512x1024.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_40k_cityscapes/fcn_hr18s_512x1024_40k_cityscapes_20200601_014216-93db27d0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_40k_cityscapes/fcn_hr18s_512x1024_40k_cityscapes_20200601_014216.log.json)     |
| FCN    | HRNetV2p-W18       | 512x1024  |   40000 | 2.9      | 12.97          | V100   | 77.19 |         78.92 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18_4xb2-40k_cityscapes-512x1024.py)   | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_40k_cityscapes/fcn_hr18_512x1024_40k_cityscapes_20200601_014216-f196fb4e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_40k_cityscapes/fcn_hr18_512x1024_40k_cityscapes_20200601_014216.log.json)         |
| FCN    | HRNetV2p-W48       | 512x1024  |   40000 | 6.2      | 6.42           | V100   | 78.48 |         79.69 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr48_4xb2-40k_cityscapes-512x1024.py)   | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_40k_cityscapes/fcn_hr48_512x1024_40k_cityscapes_20200601_014240-a989b146.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_40k_cityscapes/fcn_hr48_512x1024_40k_cityscapes_20200601_014240.log.json)         |
| FCN    | HRNetV2p-W18-Small | 512x1024  |   80000 | -        | -              | V100   | 75.31 |         77.48 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18s_4xb2-80k_cityscapes-512x1024.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_80k_cityscapes/fcn_hr18s_512x1024_80k_cityscapes_20200601_202700-1462b75d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_80k_cityscapes/fcn_hr18s_512x1024_80k_cityscapes_20200601_202700.log.json)     |
| FCN    | HRNetV2p-W18       | 512x1024  |   80000 | -        | -              | V100   | 78.65 |         80.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18_4xb2-80k_cityscapes-512x1024.py)   | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_80k_cityscapes/fcn_hr18_512x1024_80k_cityscapes_20200601_223255-4e7b345e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_80k_cityscapes/fcn_hr18_512x1024_80k_cityscapes_20200601_223255.log.json)         |
| FCN    | HRNetV2p-W48       | 512x1024  |   80000 | -        | -              | V100   | 79.93 |         80.72 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr48_4xb2-80k_cityscapes-512x1024.py)   | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_80k_cityscapes/fcn_hr48_512x1024_80k_cityscapes_20200601_202606-58ea95d6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_80k_cityscapes/fcn_hr48_512x1024_80k_cityscapes_20200601_202606.log.json)         |
| FCN    | HRNetV2p-W18-Small | 512x1024  |  160000 | -        | -              | V100   | 76.31 |         78.31 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18s_4xb2-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_160k_cityscapes/fcn_hr18s_512x1024_160k_cityscapes_20200602_190901-4a0797ea.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x1024_160k_cityscapes/fcn_hr18s_512x1024_160k_cityscapes_20200602_190901.log.json) |
| FCN    | HRNetV2p-W18       | 512x1024  |  160000 | -        | -              | V100   | 78.80 |         80.74 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18_4xb2-160k_cityscapes-512x1024.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_160k_cityscapes/fcn_hr18_512x1024_160k_cityscapes_20200602_190822-221e4a4f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x1024_160k_cityscapes/fcn_hr18_512x1024_160k_cityscapes_20200602_190822.log.json)     |
| FCN    | HRNetV2p-W48       | 512x1024  |  160000 | -        | -              | V100   | 80.65 |         81.92 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr48_4xb2-160k_cityscapes-512x1024.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_160k_cityscapes/fcn_hr48_512x1024_160k_cityscapes_20200602_190946-59b7973e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x1024_160k_cityscapes/fcn_hr48_512x1024_160k_cityscapes_20200602_190946.log.json)     |

### ADE20K

| Method | Backbone           | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                               | download                                                                                                                                                                                                                                                                                                           |
| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| FCN    | HRNetV2p-W18-Small | 512x512   |   80000 | 3.8      | 38.66          | V100   | 31.38 |         32.45 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18s_4xb4-80k_ade20k-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_ade20k/fcn_hr18s_512x512_80k_ade20k_20200614_144345-77fc814a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_ade20k/fcn_hr18s_512x512_80k_ade20k_20200614_144345.log.json)     |
| FCN    | HRNetV2p-W18       | 512x512   |   80000 | 4.9      | 22.57          | V100   | 36.27 |         37.28 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18_4xb4-80k_ade20k-512x512.py)   | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_ade20k/fcn_hr18_512x512_80k_ade20k_20210827_114910-6c9382c0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_ade20k/fcn_hr18_512x512_80k_ade20k_20210827_114910.log.json)         |
| FCN    | HRNetV2p-W48       | 512x512   |   80000 | 8.2      | 21.23          | V100   | 41.90 |         43.27 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr48_4xb4-80k_ade20k-512x512.py)   | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_ade20k/fcn_hr48_512x512_80k_ade20k_20200614_193946-7ba5258d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_ade20k/fcn_hr48_512x512_80k_ade20k_20200614_193946.log.json)         |
| FCN    | HRNetV2p-W18-Small | 512x512   |  160000 | -        | -              | V100   | 33.07 |         34.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18s_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_160k_ade20k/fcn_hr18s_512x512_160k_ade20k_20210829_174739-f1e7c2e7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_160k_ade20k/fcn_hr18s_512x512_160k_ade20k_20210829_174739.log.json) |
| FCN    | HRNetV2p-W18       | 512x512   |  160000 | -        | -              | V100   | 36.79 |         38.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18_4xb4-160k_ade20k-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_160k_ade20k/fcn_hr18_512x512_160k_ade20k_20200614_214426-ca961836.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_160k_ade20k/fcn_hr18_512x512_160k_ade20k_20200614_214426.log.json)     |
| FCN    | HRNetV2p-W48       | 512x512   |  160000 | -        | -              | V100   | 42.02 |         43.86 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr48_4xb4-160k_ade20k-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_160k_ade20k/fcn_hr48_512x512_160k_ade20k_20200614_214407-a52fc02c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_160k_ade20k/fcn_hr48_512x512_160k_ade20k_20200614_214407.log.json)     |

### Pascal VOC 2012 + Aug

| Method | Backbone           | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                                | download                                                                                                                                                                                                                                                                                                               |
| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| FCN    | HRNetV2p-W18-Small | 512x512   |   20000 | 1.8      | 43.36          | V100   |  65.5 |         68.89 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18s_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_20k_voc12aug/fcn_hr18s_512x512_20k_voc12aug_20210829_174910-0aceadb4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_20k_voc12aug/fcn_hr18s_512x512_20k_voc12aug_20210829_174910.log.json) |
| FCN    | HRNetV2p-W18       | 512x512   |   20000 | 2.9      | 23.48          | V100   | 72.30 |         74.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18_4xb4-20k_voc12aug-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_20k_voc12aug/fcn_hr18_512x512_20k_voc12aug_20200617_224503-488d45f7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_20k_voc12aug/fcn_hr18_512x512_20k_voc12aug_20200617_224503.log.json)     |
| FCN    | HRNetV2p-W48       | 512x512   |   20000 | 6.2      | 22.05          | V100   | 75.87 |         78.58 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr48_4xb4-20k_voc12aug-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_20k_voc12aug/fcn_hr48_512x512_20k_voc12aug_20200617_224419-89de05cd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_20k_voc12aug/fcn_hr48_512x512_20k_voc12aug_20200617_224419.log.json)     |
| FCN    | HRNetV2p-W18-Small | 512x512   |   40000 | -        | -              | V100   | 66.61 |         70.00 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18s_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_40k_voc12aug/fcn_hr18s_512x512_40k_voc12aug_20200614_000648-4f8d6e7f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_40k_voc12aug/fcn_hr18s_512x512_40k_voc12aug_20200614_000648.log.json) |
| FCN    | HRNetV2p-W18       | 512x512   |   40000 | -        | -              | V100   | 72.90 |         75.59 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18_4xb4-40k_voc12aug-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_40k_voc12aug/fcn_hr18_512x512_40k_voc12aug_20200613_224401-1b4b76cd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_40k_voc12aug/fcn_hr18_512x512_40k_voc12aug_20200613_224401.log.json)     |
| FCN    | HRNetV2p-W48       | 512x512   |   40000 | -        | -              | V100   | 76.24 |         78.49 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr48_4xb4-40k_voc12aug-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_40k_voc12aug/fcn_hr48_512x512_40k_voc12aug_20200613_222111-1b0f18bc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_40k_voc12aug/fcn_hr48_512x512_40k_voc12aug_20200613_222111.log.json)     |

### Pascal Context

| Method | Backbone     | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                                     | download                                                                                                                                                                                                                                                                                                                                   |
| ------ | ------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| FCN    | HRNetV2p-W48 | 480x480   |   40000 | 6.1      | 8.86           | V100   | 45.14 |         47.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr48_4xb4-40k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context/fcn_hr48_480x480_40k_pascal_context_20200911_164852-667d00b0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context/fcn_hr48_480x480_40k_pascal_context-20200911_164852.log.json) |
| FCN    | HRNetV2p-W48 | 480x480   |   80000 | -        | -              | V100   | 45.84 |         47.84 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr48_4xb4-80k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context/fcn_hr48_480x480_80k_pascal_context_20200911_155322-847a6711.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context/fcn_hr48_480x480_80k_pascal_context-20200911_155322.log.json) |

### Pascal Context 59

| Method | Backbone     | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                                        | download                                                                                                                                                                                                                                                                                                                                               |
| ------ | ------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| FCN    | HRNetV2p-W48 | 480x480   |   40000 | -        | -              | V100   | 50.33 |         52.83 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr48_4xb4-40k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context_59/fcn_hr48_480x480_40k_pascal_context_59_20210410_122738-b808b8b2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_40k_pascal_context_59/fcn_hr48_480x480_40k_pascal_context_59-20210410_122738.log.json) |
| FCN    | HRNetV2p-W48 | 480x480   |   80000 | -        | -              | V100   | 51.12 |         53.56 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr48_4xb4-80k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context_59/fcn_hr48_480x480_80k_pascal_context_59_20210411_003240-3ae7081e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_480x480_80k_pascal_context_59/fcn_hr48_480x480_80k_pascal_context_59-20210411_003240.log.json) |

### LoveDA

| Method | Backbone           | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                               | download                                                                                                                                                                                                                                                                                                       |
| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| FCN    | HRNetV2p-W18-Small | 512x512   |   80000 | 1.59     | 24.87          | V100   | 49.28 |         49.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18s_4xb4-80k_loveda-512x512.pyy) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_loveda/fcn_hr18s_512x512_80k_loveda_20211210_203228-60a86a7a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_loveda/fcn_hr18s_512x512_80k_loveda_20211210_203228.log.json) |
| FCN    | HRNetV2p-W18       | 512x512   |   80000 | 2.76     | 12.92          | V100   | 50.81 |         50.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18_4xb4-80k_loveda-512x512.py)   | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_loveda/fcn_hr18_512x512_80k_loveda_20211210_203952-93d9c3b3.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_loveda/fcn_hr18_512x512_80k_loveda_20211210_203952.log.json)     |
| FCN    | HRNetV2p-W48       | 512x512   |   80000 | 6.20     | 9.61           | V100   | 51.42 |         51.64 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr48_4xb4-80k_loveda-512x512.py)   | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_loveda/fcn_hr48_512x512_80k_loveda_20211211_044756-67072f55.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_loveda/fcn_hr48_512x512_80k_loveda_20211211_044756.log.json)     |

### Potsdam

| Method | Backbone           | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                               | download                                                                                                                                                                                                                                                                                                           |
| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| FCN    | HRNetV2p-W18-Small | 512x512   |   80000 | 1.58     | 36.00          | V100   | 77.64 |          78.8 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18s_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_potsdam/fcn_hr18s_512x512_80k_potsdam_20211218_205517-ba32af63.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_512x512_80k_potsdam/fcn_hr18s_512x512_80k_potsdam_20211218_205517.log.json) |
| FCN    | HRNetV2p-W18       | 512x512   |   80000 | 2.76     | 19.25          | V100   | 78.26 |         79.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18_4xb4-80k_potsdam-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_potsdam/fcn_hr18_512x512_80k_potsdam_20211218_205517-5d0387ad.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_512x512_80k_potsdam/fcn_hr18_512x512_80k_potsdam_20211218_205517.log.json)     |
| FCN    | HRNetV2p-W48       | 512x512   |   80000 | 6.20     | 16.42          | V100   | 78.39 |         79.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr48_4xb4-80k_potsdam-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_potsdam/fcn_hr48_512x512_80k_potsdam_20211219_020601-97434c78.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_512x512_80k_potsdam/fcn_hr48_512x512_80k_potsdam_20211219_020601.log.json)     |

### Vaihingen

| Method | Backbone           | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                                 | download                                                                                                                                                                                                                                                                                                                                   |
| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| FCN    | HRNetV2p-W18-Small | 512x512   |   80000 | 1.58     | 38.11          | V100   | 71.81 |          73.1 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18s_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_4x4_512x512_80k_vaihingen/fcn_hr18s_4x4_512x512_80k_vaihingen_20211231_230909-b23aae02.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_4x4_512x512_80k_vaihingen/fcn_hr18s_4x4_512x512_80k_vaihingen_20211231_230909.log.json) |
| FCN    | HRNetV2p-W18       | 512x512   |   80000 | 2.76     | 19.55          | V100   | 72.57 |         74.09 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18_4xb4-80k_vaihingen-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_4x4_512x512_80k_vaihingen/fcn_hr18_4x4_512x512_80k_vaihingen_20211231_231216-2ec3ae8a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_4x4_512x512_80k_vaihingen/fcn_hr18_4x4_512x512_80k_vaihingen_20211231_231216.log.json)     |
| FCN    | HRNetV2p-W48       | 512x512   |   80000 | 6.20     | 17.25          | V100   | 72.50 |         73.52 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr48_4xb4-80k_vaihingen-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_4x4_512x512_80k_vaihingen/fcn_hr48_4x4_512x512_80k_vaihingen_20211231_231244-7133cb22.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_4x4_512x512_80k_vaihingen/fcn_hr48_4x4_512x512_80k_vaihingen_20211231_231244.log.json)     |

### iSAID

| Method | Backbone           | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                             | download                                                                                                                                                                                                                                                                                                                   |
| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| FCN    | HRNetV2p-W18-Small | 896x896   |   80000 | 4.95     | 13.84          | V100   | 62.30 |         62.97 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18s_4xb4-80k_isaid-896x896.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_4x4_896x896_80k_isaid/fcn_hr18s_4x4_896x896_80k_isaid_20220118_001603-3cc0769b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18s_4x4_896x896_80k_isaid/fcn_hr18s_4x4_896x896_80k_isaid_20220118_001603.log.json) |
| FCN    | HRNetV2p-W18       | 896x896   |   80000 | 8.30     | 7.71           | V100   | 65.06 |         65.60 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr18_4xb4-80k_isaid-896x896.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_4x4_896x896_80k_isaid/fcn_hr18_4x4_896x896_80k_isaid_20220110_182230-49bf752e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr18_4x4_896x896_80k_isaid/fcn_hr18_4x4_896x896_80k_isaid_20220110_182230.log.json)     |
| FCN    | HRNetV2p-W48       | 896x896   |   80000 | 16.89    | 7.34           | V100   | 67.80 |         68.53 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/hrnet/fcn_hr48_4xb4-80k_isaid-896x896.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_4x4_896x896_80k_isaid/fcn_hr48_4x4_896x896_80k_isaid_20220114_174643-547fc420.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/hrnet/fcn_hr48_4x4_896x896_80k_isaid/fcn_hr48_4x4_896x896_80k_isaid_20220114_174643.log.json)     |

Note:

- `896x896` is the Crop Size of iSAID dataset, which is followed by the implementation of [PointFlow: Flowing Semantics Through Points for Aerial Image Segmentation](https://arxiv.org/pdf/2103.06564.pdf)

## Citation

```bibtext
@inproceedings{SunXLW19,
  title={Deep High-Resolution Representation Learning for Human Pose Estimation},
  author={Ke Sun and Bin Xiao and Dong Liu and Jingdong Wang},
  booktitle={CVPR},
  year={2019}
}
```