File size: 7,907 Bytes
412c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
Collections:
- Name: KNet
  License: Apache License 2.0
  Metadata:
    Training Data:
    - ADE20K
  Paper:
    Title: 'K-Net: Towards Unified Image Segmentation'
    URL: https://arxiv.org/abs/2106.14855
  README: configs/knet/README.md
  Frameworks:
  - PyTorch
Models:
- Name: knet-s3_r50-d8_fcn_8xb2-adamw-80k_ade20k-512x512
  In Collection: KNet
  Results:
    Task: Semantic Segmentation
    Dataset: ADE20K
    Metrics:
      mIoU: 43.6
      mIoU(ms+flip): 45.12
  Config: configs/knet/knet-s3_r50-d8_fcn_8xb2-adamw-80k_ade20k-512x512.py
  Metadata:
    Training Data: ADE20K
    Batch Size: 16
    Architecture:
    - R-50-D8
    - KNet
    - FCN
    Training Resources: 8x V100 GPUS
    Memory (GB): 7.01
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_043751-abcab920.pth
  Training log: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_fcn_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_043751.log.json
  Paper:
    Title: 'K-Net: Towards Unified Image Segmentation'
    URL: https://arxiv.org/abs/2106.14855
  Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392
  Framework: PyTorch
- Name: knet-s3_r50-d8_pspnet_8xb2-adamw-80k_ade20k-512x512
  In Collection: KNet
  Results:
    Task: Semantic Segmentation
    Dataset: ADE20K
    Metrics:
      mIoU: 44.18
      mIoU(ms+flip): 45.58
  Config: configs/knet/knet-s3_r50-d8_pspnet_8xb2-adamw-80k_ade20k-512x512.py
  Metadata:
    Training Data: ADE20K
    Batch Size: 16
    Architecture:
    - R-50-D8
    - KNet
    - PSPNet
    Training Resources: 8x V100 GPUS
    Memory (GB): 6.98
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_054634-d2c72240.pth
  Training log: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_pspnet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_054634.log.json
  Paper:
    Title: 'K-Net: Towards Unified Image Segmentation'
    URL: https://arxiv.org/abs/2106.14855
  Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392
  Framework: PyTorch
- Name: knet-s3_r50-d8_deeplabv3_8xb2-adamw-80k_ade20k-512x512
  In Collection: KNet
  Results:
    Task: Semantic Segmentation
    Dataset: ADE20K
    Metrics:
      mIoU: 45.06
      mIoU(ms+flip): 46.11
  Config: configs/knet/knet-s3_r50-d8_deeplabv3_8xb2-adamw-80k_ade20k-512x512.py
  Metadata:
    Training Data: ADE20K
    Batch Size: 16
    Architecture:
    - R-50-D8
    - KNet
    - DeepLabV3
    Training Resources: 8x V100 GPUS
    Memory (GB): 7.42
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_041642-00c8fbeb.pth
  Training log: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_deeplabv3_r50-d8_8x2_512x512_adamw_80k_ade20k_20220228_041642.log.json
  Paper:
    Title: 'K-Net: Towards Unified Image Segmentation'
    URL: https://arxiv.org/abs/2106.14855
  Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392
  Framework: PyTorch
- Name: knet-s3_r50-d8_upernet_8xb2-adamw-80k_ade20k-512x512
  In Collection: KNet
  Results:
    Task: Semantic Segmentation
    Dataset: ADE20K
    Metrics:
      mIoU: 43.45
      mIoU(ms+flip): 44.07
  Config: configs/knet/knet-s3_r50-d8_upernet_8xb2-adamw-80k_ade20k-512x512.py
  Metadata:
    Training Data: ADE20K
    Batch Size: 16
    Architecture:
    - R-50-D8
    - KNet
    - UperNet
    Training Resources: 8x V100 GPUS
    Memory (GB): 7.34
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220304_125657-215753b0.pth
  Training log: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_r50-d8_8x2_512x512_adamw_80k_ade20k_20220304_125657.log.json
  Paper:
    Title: 'K-Net: Towards Unified Image Segmentation'
    URL: https://arxiv.org/abs/2106.14855
  Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392
  Framework: PyTorch
- Name: knet-s3_swin-t_upernet_8xb2-adamw-80k_ade20k-512x512
  In Collection: KNet
  Results:
    Task: Semantic Segmentation
    Dataset: ADE20K
    Metrics:
      mIoU: 45.84
      mIoU(ms+flip): 46.27
  Config: configs/knet/knet-s3_swin-t_upernet_8xb2-adamw-80k_ade20k-512x512.py
  Metadata:
    Training Data: ADE20K
    Batch Size: 16
    Architecture:
    - Swin-T
    - KNet
    - UperNet
    Training Resources: 8x V100 GPUS
    Memory (GB): 7.57
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k_20220303_133059-7545e1dc.pth
  Training log: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-t_8x2_512x512_adamw_80k_ade20k_20220303_133059.log.json
  Paper:
    Title: 'K-Net: Towards Unified Image Segmentation'
    URL: https://arxiv.org/abs/2106.14855
  Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392
  Framework: PyTorch
- Name: knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-512x512
  In Collection: KNet
  Results:
    Task: Semantic Segmentation
    Dataset: ADE20K
    Metrics:
      mIoU: 52.05
      mIoU(ms+flip): 53.24
  Config: configs/knet/knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-512x512.py
  Metadata:
    Training Data: ADE20K
    Batch Size: 16
    Architecture:
    - Swin-L
    - KNet
    - UperNet
    Training Resources: 8x V100 GPUS
    Memory (GB): 13.5
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k_20220303_154559-d8da9a90.pth
  Training log: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_512x512_adamw_80k_ade20k_20220303_154559.log.json
  Paper:
    Title: 'K-Net: Towards Unified Image Segmentation'
    URL: https://arxiv.org/abs/2106.14855
  Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392
  Framework: PyTorch
- Name: knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-640x640
  In Collection: KNet
  Results:
    Task: Semantic Segmentation
    Dataset: ADE20K
    Metrics:
      mIoU: 52.21
      mIoU(ms+flip): 53.34
  Config: configs/knet/knet-s3_swin-l_upernet_8xb2-adamw-80k_ade20k-640x640.py
  Metadata:
    Training Data: ADE20K
    Batch Size: 16
    Architecture:
    - Swin-L
    - KNet
    - UperNet
    Training Resources: 8x V100 GPUS
    Memory (GB): 13.54
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k_20220301_220747-8787fc71.pth
  Training log: https://download.openmmlab.com/mmsegmentation/v0.5/knet/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k/knet_s3_upernet_swin-l_8x2_640x640_adamw_80k_ade20k_20220301_220747.log.json
  Paper:
    Title: 'K-Net: Towards Unified Image Segmentation'
    URL: https://arxiv.org/abs/2106.14855
  Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.23.0/mmseg/models/decode_heads/knet_head.py#L392
  Framework: PyTorch