Spaces:
Runtime error
Runtime error
File size: 5,747 Bytes
412c852 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
Collections:
- Name: Segmenter
License: Apache License 2.0
Metadata:
Training Data:
- ADE20K
Paper:
Title: 'Segmenter: Transformer for Semantic Segmentation'
URL: https://arxiv.org/abs/2105.05633
README: configs/segmenter/README.md
Frameworks:
- PyTorch
Models:
- Name: segmenter_vit-t_mask_8xb1-160k_ade20k-512x512
In Collection: Segmenter
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 39.99
mIoU(ms+flip): 40.83
Config: configs/segmenter/segmenter_vit-t_mask_8xb1-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 8
Architecture:
- ViT-T_16
- Segmenter
- Mask
Training Resources: 8x V100 GPUS
Memory (GB): 1.21
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-t_mask_8x1_512x512_160k_ade20k/segmenter_vit-t_mask_8x1_512x512_160k_ade20k_20220105_151706-ffcf7509.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-t_mask_8x1_512x512_160k_ade20k/segmenter_vit-t_mask_8x1_512x512_160k_ade20k_20220105_151706.log.json
Paper:
Title: 'Segmenter: Transformer for Semantic Segmentation'
URL: https://arxiv.org/abs/2105.05633
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.21.0/mmseg/models/decode_heads/segmenter_mask_head.py#L15
Framework: PyTorch
- Name: segmenter_vit-s_fcn_8xb1-160k_ade20k-512x512
In Collection: Segmenter
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 45.75
mIoU(ms+flip): 46.82
Config: configs/segmenter/segmenter_vit-s_fcn_8xb1-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 8
Architecture:
- ViT-S_16
- Segmenter
- Linear
Training Resources: 8x V100 GPUS
Memory (GB): 1.78
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_linear_8x1_512x512_160k_ade20k/segmenter_vit-s_linear_8x1_512x512_160k_ade20k_20220105_151713-39658c46.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_linear_8x1_512x512_160k_ade20k/segmenter_vit-s_linear_8x1_512x512_160k_ade20k_20220105_151713.log.json
Paper:
Title: 'Segmenter: Transformer for Semantic Segmentation'
URL: https://arxiv.org/abs/2105.05633
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.21.0/mmseg/models/decode_heads/segmenter_mask_head.py#L15
Framework: PyTorch
- Name: segmenter_vit-s_mask_8xb1-160k_ade20k-512x512
In Collection: Segmenter
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 46.19
mIoU(ms+flip): 47.85
Config: configs/segmenter/segmenter_vit-s_mask_8xb1-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 8
Architecture:
- ViT-S_16
- Segmenter
- Mask
Training Resources: 8x V100 GPUS
Memory (GB): 2.03
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_mask_8x1_512x512_160k_ade20k/segmenter_vit-s_mask_8x1_512x512_160k_ade20k_20220105_151706-511bb103.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-s_mask_8x1_512x512_160k_ade20k/segmenter_vit-s_mask_8x1_512x512_160k_ade20k_20220105_151706.log.json
Paper:
Title: 'Segmenter: Transformer for Semantic Segmentation'
URL: https://arxiv.org/abs/2105.05633
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.21.0/mmseg/models/decode_heads/segmenter_mask_head.py#L15
Framework: PyTorch
- Name: segmenter_vit-b_mask_8xb1-160k_ade20k-512x512
In Collection: Segmenter
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 49.6
mIoU(ms+flip): 51.07
Config: configs/segmenter/segmenter_vit-b_mask_8xb1-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 8
Architecture:
- ViT-B_16
- Segmenter
- Mask
Training Resources: 8x V100 GPUS
Memory (GB): 4.2
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k/segmenter_vit-b_mask_8x1_512x512_160k_ade20k_20220105_151706-bc533b08.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-b_mask_8x1_512x512_160k_ade20k/segmenter_vit-b_mask_8x1_512x512_160k_ade20k_20220105_151706.log.json
Paper:
Title: 'Segmenter: Transformer for Semantic Segmentation'
URL: https://arxiv.org/abs/2105.05633
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.21.0/mmseg/models/decode_heads/segmenter_mask_head.py#L15
Framework: PyTorch
- Name: segmenter_vit-l_mask_8xb1-160k_ade20k-512x512
In Collection: Segmenter
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 52.16
mIoU(ms+flip): 53.65
Config: configs/segmenter/segmenter_vit-l_mask_8xb1-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 8
Architecture:
- ViT-L_16
- Segmenter
- Mask
Training Resources: 8x V100 GPUS
Memory (GB): 16.56
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-l_mask_8x1_512x512_160k_ade20k/segmenter_vit-l_mask_8x1_512x512_160k_ade20k_20220105_162750-7ef345be.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/segmenter/segmenter_vit-l_mask_8x1_512x512_160k_ade20k/segmenter_vit-l_mask_8x1_512x512_160k_ade20k_20220105_162750.log.json
Paper:
Title: 'Segmenter: Transformer for Semantic Segmentation'
URL: https://arxiv.org/abs/2105.05633
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.21.0/mmseg/models/decode_heads/segmenter_mask_head.py#L15
Framework: PyTorch
|