File size: 1,679 Bytes
412c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
_base_ = [
    '../_base_/models/upernet_swin.py', '../_base_/datasets/levir_256x256.py',
    '../_base_/default_runtime.py', '../_base_/schedules/schedule_20k.py'
]
crop_size = (256, 256)
norm_cfg = dict(type='BN', requires_grad=True)
data_preprocessor = dict(
    size=crop_size,
    type='SegDataPreProcessor',
    mean=[123.675, 116.28, 103.53, 123.675, 116.28, 103.53],
    std=[58.395, 57.12, 57.375, 58.395, 57.12, 57.375])

model = dict(
    data_preprocessor=data_preprocessor,
    backbone=dict(
        in_channels=6,
        embed_dims=96,
        depths=[2, 2, 6, 2],
        num_heads=[3, 6, 12, 24],
        window_size=7,
        use_abs_pos_embed=False,
        drop_path_rate=0.3,
        patch_norm=True),
    decode_head=dict(in_channels=[96, 192, 384, 768], num_classes=2),
    auxiliary_head=dict(in_channels=384, num_classes=2))

# AdamW optimizer, no weight decay for position embedding & layer norm
# in backbone
optim_wrapper = dict(
    _delete_=True,
    type='OptimWrapper',
    optimizer=dict(
        type='AdamW', lr=0.00006, betas=(0.9, 0.999), weight_decay=0.01),
    paramwise_cfg=dict(
        custom_keys={
            'absolute_pos_embed': dict(decay_mult=0.),
            'relative_position_bias_table': dict(decay_mult=0.),
            'norm': dict(decay_mult=0.)
        }))

param_scheduler = [
    dict(
        type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=1500),
    dict(
        type='PolyLR',
        eta_min=0.0,
        power=1.0,
        begin=1500,
        end=20000,
        by_epoch=False,
    )
]

train_dataloader = dict(batch_size=4)
val_dataloader = dict(batch_size=1)
test_dataloader = val_dataloader