File size: 6,439 Bytes
412c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import torch
import torch.nn as nn
import torch.nn.functional as F
import math

class LoRALayer():
    def __init__(
        self,
        r: int,
        lora_alpha: int,
        lora_dropout: float,
        merge_weights: bool,
    ):
        self.r = r
        self.lora_alpha = lora_alpha
        # Optional dropout
        if lora_dropout > 0.:
            self.lora_dropout = nn.Dropout(p=lora_dropout)
        else:
            self.lora_dropout = lambda x: x
        # Mark the weight as unmerged
        self.merged = False
        self.merge_weights = merge_weights

class Linear(nn.Linear, LoRALayer):
    # LoRA implemented in a dense layer
    def __init__(
        self,
        in_features: int,
        out_features: int,
        r: int = 0,
        lora_alpha: int = 1,
        lora_dropout: float = 0.,
        fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out)
        merge_weights: bool = True,
        **kwargs
    ):
        nn.Linear.__init__(self, in_features, out_features, **kwargs)
        LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout,
                           merge_weights=merge_weights)

        self.fan_in_fan_out = fan_in_fan_out
        # Actual trainable parameters
        if r > 0:
            self.lora_A = nn.Parameter(self.weight.new_zeros((r, in_features)))
            self.lora_B = nn.Parameter(self.weight.new_zeros((out_features, r)))
            self.scaling = self.lora_alpha / self.r
            # Freezing the pre-trained weight matrix
            self.weight.requires_grad = False
        self.reset_parameters()
        if fan_in_fan_out:
            self.weight.data = self.weight.data.transpose(0, 1)

    def reset_parameters(self):
        nn.Linear.reset_parameters(self)
        if hasattr(self, 'lora_A'):
            # initialize A the same way as the default for nn.Linear and B to zero
            nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
            nn.init.zeros_(self.lora_B)

    def train(self, mode: bool = True):
        def T(w):
            return w.transpose(0, 1) if self.fan_in_fan_out else w
        nn.Linear.train(self, mode)
        if mode:
            if self.merge_weights and self.merged:
                # Make sure that the weights are not merged
                if self.r > 0:
                    self.weight.data -= T(self.lora_B @ self.lora_A) * self.scaling
                self.merged = False
        else:
            if self.merge_weights and not self.merged:
                # Merge the weights and mark it
                if self.r > 0:
                    self.weight.data += T(self.lora_B @ self.lora_A) * self.scaling
                self.merged = True

    def forward(self, x: torch.Tensor):
        def T(w):
            return w.transpose(0, 1) if self.fan_in_fan_out else w
        if self.r > 0 and not self.merged:
            result = F.linear(x, T(self.weight), bias=self.bias)
            if self.r > 0:
                result += (self.lora_dropout(x) @ self.lora_A.transpose(0, 1) @ self.lora_B.transpose(0, 1)) * self.scaling
            return result
        else:
            return F.linear(x, T(self.weight), bias=self.bias)



class Conv2d(nn.Conv2d, LoRALayer):
    # LoRA implemented in a dense layer
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: int,
        r: int = 0,
        lora_alpha: int = 1,
        lora_dropout: float = 0.,
        merge_weights: bool = True,
        **kwargs
    ):
        nn.Conv2d.__init__(self, in_channels, out_channels, kernel_size, **kwargs)
        LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout,
                           merge_weights=merge_weights)
        # assert type(kernel_size) is int
        if type(kernel_size) is tuple:
            temp_ks = kernel_size[0]
        # Actual trainable parameters
        if r > 0:
            self.lora_A = nn.Parameter(
                self.weight.new_zeros((r*temp_ks, in_channels*temp_ks))
            )
            self.lora_B = nn.Parameter(
                self.weight.new_zeros((out_channels*temp_ks, r*temp_ks))
            )
            self.scaling = self.lora_alpha / self.r
            # Freezing the pre-trained weight matrix
            self.weight.requires_grad = False
        self.reset_parameters()

    def reset_parameters(self):
        nn.Conv2d.reset_parameters(self)
        if hasattr(self, 'lora_A'):
            # initialize A the same way as the default for nn.Linear and B to zero
            nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
            nn.init.zeros_(self.lora_B)

    def train(self, mode: bool = True):
        nn.Conv2d.train(self, mode)
        if mode:
            if self.merge_weights and self.merged:
                # Make sure that the weights are not merged
                self.weight.data -= (self.lora_B @ self.lora_A).view(self.weight.shape) * self.scaling
                self.merged = False
        else:
            if self.merge_weights and not self.merged:
                # Merge the weights and mark it
                self.weight.data += (self.lora_B @ self.lora_A).view(self.weight.shape) * self.scaling
                self.merged = True

    def forward(self, x: torch.Tensor):
        if self.r > 0 and not self.merged:
            return F.conv2d(
                x,
                self.weight + (self.lora_B @ self.lora_A).view(self.weight.shape) * self.scaling,
                self.bias, self.stride, self.padding, self.dilation, self.groups
            )
        return nn.Conv2d.forward(self, x)

def wrap_model_with_lora(module, rank=4):
    for name, child in module.named_children():
        if isinstance(child, (Linear, Conv2d)):
            continue

        if 'stitch' in name:
            pass

        if isinstance(child, nn.Linear):
            setattr(module, name, Linear(in_features=child.in_features, out_features=child.out_features, bias=child.bias is not None, r=rank))
        elif isinstance(child, nn.Conv2d):
            setattr(module, name, Conv2d(in_channels=child.in_channels, out_channels=child.out_channels, kernel_size=child.kernel_size, stride=child.stride, padding=child.padding, dilation=child.dilation, groups=child.groups, bias=child.bias is not None, r=rank))
        else:
            wrap_model_with_lora(child, rank)