File size: 18,795 Bytes
412c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
# Copyright (c) OpenMMLab. All rights reserved.import math
import math

import torch
import torch.nn as nn
from mmengine.model import ModuleList
from mmengine.model.weight_init import (constant_init, kaiming_init,
                                        trunc_normal_)
from mmengine.runner.checkpoint import _load_checkpoint
from torch.nn.modules.batchnorm import _BatchNorm
from ..utils import resize
from mmseg.registry import MODELS
from .beit import BEiT, BEiTAttention, BEiTTransformerEncoderLayer


class MAEAttention(BEiTAttention):
    """Multi-head self-attention with relative position bias used in MAE.

    This module is different from ``BEiTAttention`` by initializing the
    relative bias table with zeros.
    """

    def init_weights(self):
        """Initialize relative position bias with zeros."""

        # As MAE initializes relative position bias as zeros and this class
        # inherited from BEiT which initializes relative position bias
        # with `trunc_normal`, `init_weights` here does
        # nothing and just passes directly

        pass


class MAETransformerEncoderLayer(BEiTTransformerEncoderLayer):
    """Implements one encoder layer in Vision Transformer.

    This module is different from ``BEiTTransformerEncoderLayer`` by replacing
    ``BEiTAttention`` with ``MAEAttention``.
    """

    def build_attn(self, attn_cfg):
        self.attn = MAEAttention(**attn_cfg)


@MODELS.register_module()
class MAE(BEiT):
    """VisionTransformer with support for patch.

    Args:
        img_size (int | tuple): Input image size. Default: 224.
        patch_size (int): The patch size. Default: 16.
        in_channels (int): Number of input channels. Default: 3.
        embed_dims (int): embedding dimension. Default: 768.
        num_layers (int): depth of transformer. Default: 12.
        num_heads (int): number of attention heads. Default: 12.
        mlp_ratio (int): ratio of mlp hidden dim to embedding dim.
            Default: 4.
        out_indices (list | tuple | int): Output from which stages.
            Default: -1.
        attn_drop_rate (float): The drop out rate for attention layer.
            Default 0.0
        drop_path_rate (float): stochastic depth rate. Default 0.0.
        norm_cfg (dict): Config dict for normalization layer.
            Default: dict(type='LN')
        act_cfg (dict): The activation config for FFNs.
            Default: dict(type='GELU').
        patch_norm (bool): Whether to add a norm in PatchEmbed Block.
            Default: False.
        final_norm (bool): Whether to add a additional layer to normalize
            final feature map. Default: False.
        num_fcs (int): The number of fully-connected layers for FFNs.
            Default: 2.
        norm_eval (bool): Whether to set norm layers to eval mode, namely,
            freeze running stats (mean and var). Note: Effect on Batch Norm
            and its variants only. Default: False.
        pretrained (str, optional): model pretrained path. Default: None.
        init_values (float): Initialize the values of Attention and FFN
            with learnable scaling. Defaults to 0.1.
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Default: None.
    """

    def __init__(self,
                 img_size=224,
                 patch_size=16,
                 in_channels=3,
                 embed_dims=768,
                 num_layers=12,
                 num_heads=12,
                 mlp_ratio=4,
                 out_indices=-1,
                 attn_drop_rate=0.,
                 drop_path_rate=0.,
                 norm_cfg=dict(type='LN'),
                 act_cfg=dict(type='GELU'),
                 patch_norm=False,
                 final_norm=False,
                 num_fcs=2,
                 norm_eval=False,
                 pretrained=None,
                 init_values=0.1,
                 is_deit_3=False,
                 is_anchor=False,
                 with_cls_token=True,
                 interpolate_mode='bicubic',
                 init_cfg=None):
        super().__init__(
            img_size=img_size,
            patch_size=patch_size,
            in_channels=in_channels,
            embed_dims=embed_dims,
            num_layers=num_layers,
            num_heads=num_heads,
            mlp_ratio=mlp_ratio,
            out_indices=out_indices,
            qv_bias=False,
            attn_drop_rate=attn_drop_rate,
            drop_path_rate=drop_path_rate,
            norm_cfg=norm_cfg,
            act_cfg=act_cfg,
            patch_norm=patch_norm,
            final_norm=final_norm,
            num_fcs=num_fcs,
            norm_eval=norm_eval,
            pretrained=pretrained,
            init_values=init_values,
            init_cfg=init_cfg)
        self.is_anchor = is_anchor
        self.interpolate_mode = interpolate_mode
        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dims))
        self.with_cls_token = with_cls_token
        self.num_patches = self.patch_shape[0] * self.patch_shape[1]

        self.is_deit_3 = is_deit_3
        if self.is_deit_3:
            self.pos_embed = nn.Parameter(
                torch.zeros(1, self.num_patches, embed_dims))
        else:
            self.pos_embed = nn.Parameter(
                torch.zeros(1, self.num_patches + 1, embed_dims))

    def _build_layers(self):
        dpr = [
            x.item()
            for x in torch.linspace(0, self.drop_path_rate, self.num_layers)
        ]
        self.layers = ModuleList()
        for i in range(self.num_layers):
            self.layers.append(
                MAETransformerEncoderLayer(
                    embed_dims=self.embed_dims,
                    num_heads=self.num_heads,
                    feedforward_channels=self.mlp_ratio * self.embed_dims,
                    attn_drop_rate=self.attn_drop_rate,
                    drop_path_rate=dpr[i],
                    num_fcs=self.num_fcs,
                    bias=True,
                    act_cfg=self.act_cfg,
                    norm_cfg=self.norm_cfg,
                    window_size=self.patch_shape,
                    init_values=self.init_values))

    def fix_init_weight(self):
        """Rescale the initialization according to layer id.

        This function is copied from  https://github.com/microsoft/unilm/blob/master/beit/modeling_pretrain.py. # noqa: E501
        Copyright (c) Microsoft Corporation
        Licensed under the MIT License
        """

        def rescale(param, layer_id):
            param.div_(math.sqrt(2.0 * layer_id))

        for layer_id, layer in enumerate(self.layers):
            rescale(layer.attn.proj.weight.data, layer_id + 1)
            rescale(layer.ffn.layers[1].weight.data, layer_id + 1)

    def init_weights(self):

        def _init_weights(m):
            if isinstance(m, nn.Linear):
                trunc_normal_(m.weight, std=.02)
                if isinstance(m, nn.Linear) and m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.LayerNorm):
                nn.init.constant_(m.bias, 0)
                nn.init.constant_(m.weight, 1.0)

        self.apply(_init_weights)
        self.fix_init_weight()

        if (isinstance(self.init_cfg, dict)
                and self.init_cfg.get('type') == 'Pretrained'):
            checkpoint = _load_checkpoint(
                self.init_cfg['checkpoint'], logger=None, map_location='cpu')
            state_dict = self.resize_rel_pos_embed(checkpoint)
            state_dict = self.resize_abs_pos_embed(state_dict)
            self.load_state_dict(state_dict, False)
        elif self.init_cfg is not None:
            super().init_weights()
        else:
            # We only implement the 'jax_impl' initialization implemented at
            # https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py#L353  # noqa: E501
            # Copyright 2019 Ross Wightman
            # Licensed under the Apache License, Version 2.0 (the "License")
            trunc_normal_(self.cls_token, std=.02)
            for n, m in self.named_modules():
                if isinstance(m, nn.Linear):
                    trunc_normal_(m.weight, std=.02)
                    if m.bias is not None:
                        if 'ffn' in n:
                            nn.init.normal_(m.bias, mean=0., std=1e-6)
                        else:
                            nn.init.constant_(m.bias, 0)
                elif isinstance(m, nn.Conv2d):
                    kaiming_init(m, mode='fan_in', bias=0.)
                elif isinstance(m, (_BatchNorm, nn.GroupNorm, nn.LayerNorm)):
                    constant_init(m, val=1.0, bias=0.)

    @staticmethod
    def resize_pos_embed(pos_embed, input_shpae, pos_shape, mode):
        """Resize pos_embed weights.

        Resize pos_embed using bicubic interpolate method.
        Args:
            pos_embed (torch.Tensor): Position embedding weights.
            input_shpae (tuple): Tuple for (downsampled input image height,
                downsampled input image width).
            pos_shape (tuple): The resolution of downsampled origin training
                image.
            mode (str): Algorithm used for upsampling:
                ``'nearest'`` | ``'linear'`` | ``'bilinear'`` | ``'bicubic'`` |
                ``'trilinear'``. Default: ``'nearest'``
        Return:
            torch.Tensor: The resized pos_embed of shape [B, L_new, C]
        """
        assert pos_embed.ndim == 3, 'shape of pos_embed must be [B, L, C]'
        pos_h, pos_w = pos_shape
        # keep dim for easy deployment
        pos_embed_weight = pos_embed.reshape(
            1, pos_h, pos_w, pos_embed.shape[2]).permute(0, 3, 1, 2)
        pos_embed_weight = resize(
            pos_embed_weight, size=input_shpae, align_corners=False, mode=mode)
        pos_embed_weight = torch.flatten(pos_embed_weight, 2).transpose(1, 2)
        return pos_embed_weight


    def _pos_embeding(self, patched_img, hw_shape, pos_embed):
        """Positioning embeding method.

        Resize the pos_embed, if the input image size doesn't match
            the training size.
        Args:
            patched_img (torch.Tensor): The patched image, it should be
                shape of [B, L1, C].
            hw_shape (tuple): The downsampled image resolution.
            pos_embed (torch.Tensor): The pos_embed weighs, it should be
                shape of [B, L2, c].
        Return:
            torch.Tensor: The pos encoded image feature.
        """
        assert patched_img.ndim == 3 and pos_embed.ndim == 3, \
            'the shapes of patched_img and pos_embed must be [B, L, C]'
        x_len, pos_len = patched_img.shape[1], pos_embed.shape[1]
        if x_len != pos_len:
            pos_h = self.img_size[0] // self.patch_size
            pos_w = self.img_size[1] // self.patch_size
            if not self.is_deit_3:
                pos_embed = self.resize_pos_embed_with_cls(
                    pos_embed, hw_shape, (pos_h, pos_w), self.interpolate_mode)
            else:
                pos_embed = self.resize_pos_embed(pos_embed, hw_shape,
                                                  (pos_h, pos_w),
                                                  self.interpolate_mode)
        return patched_img + pos_embed

    def resize_abs_pos_embed(self, state_dict):
        if 'pos_embed' in state_dict:
            pos_embed_checkpoint = state_dict['pos_embed']
            embedding_size = pos_embed_checkpoint.shape[-1]
            num_extra_tokens = self.pos_embed.shape[-2] - self.num_patches
            # height (== width) for the checkpoint position embedding
            orig_size = int(
                (pos_embed_checkpoint.shape[-2] - num_extra_tokens)**0.5)
            # height (== width) for the new position embedding
            new_size = int(self.num_patches**0.5)
            # class_token and dist_token are kept unchanged
            if orig_size != new_size:
                extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
                # only the position tokens are interpolated
                pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
                pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size,
                                                embedding_size).permute(
                                                    0, 3, 1, 2)
                pos_tokens = torch.nn.functional.interpolate(
                    pos_tokens,
                    size=(new_size, new_size),
                    mode='bicubic',
                    align_corners=False)
                pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
                new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
                state_dict['pos_embed'] = new_pos_embed
        return state_dict

    def extract_block_features(self, inputs):
        B = inputs.shape[0]

        x, hw_shape = self.patch_embed(inputs)
        cls_tokens = self.cls_token.expand(B, -1, -1)

        if self.is_deit_3:
            x = self._pos_embeding(x, hw_shape, self.pos_embed)
            x = torch.cat((cls_tokens, x), dim=1)
        else:
            x = torch.cat((cls_tokens, x), dim=1)
            x = self._pos_embeding(x, hw_shape, self.pos_embed)

        if hasattr(self, 'norm_pre'):
            x = self.norm_pre(x)

        if not self.with_cls_token:
            # Remove class token for transformer encoder input
            x = x[:, 1:]

        outs = {}

        for i, layer in enumerate(self.layers):
            x = layer(x)
            outs[i] = x.detach()
        return outs


    def forward_until(self, inputs, blk_id):
        B = inputs.shape[0]

        x, hw_shape = self.patch_embed(inputs)
        cls_tokens = self.cls_token.expand(B, -1, -1)

        if self.is_deit_3:
            x = self._pos_embeding(x, hw_shape, self.pos_embed)
            x = torch.cat((cls_tokens, x), dim=1)
        else:
            x = torch.cat((cls_tokens, x), dim=1)
            x = self._pos_embeding(x, hw_shape, self.pos_embed)

        if hasattr(self, 'norm_pre'):
            x = self.norm_pre(x)

        if not self.with_cls_token:
            # Remove class token for transformer encoder input
            x = x[:, 1:]

        outs = []
        for i, layer in enumerate(self.layers):
            x = layer(x)
            if i in self.out_indices:
                outs.append(x)

            if i == blk_id:
                break

        return x, outs, hw_shape

    def patch_embed_params(self):
        total_params = 0
        total_params += sum([p.numel() for p in self.patch_embed.parameters()])

        if hasattr(self, 'norm_pre'):
            total_params += self.norm_pre.numel()
        return total_params

    def selective_params(self, begin, end):
        total_params = 0
        for i, layer in enumerate(self.layers):
            if i < begin:
                continue
            if i > end:
                break
            total_params += sum([p.numel() for p in layer.parameters()])
        return total_params


    def forward_patch_embed(self, x):
        B = x.shape[0]

        x, hw_shape = self.patch_embed(x)
        cls_tokens = self.cls_token.expand(B, -1, -1)

        if self.is_deit_3:
            x = self._pos_embeding(x, hw_shape, self.pos_embed)
            x = torch.cat((cls_tokens, x), dim=1)
        else:
            x = torch.cat((cls_tokens, x), dim=1)
            x = self._pos_embeding(x, hw_shape, self.pos_embed)

        if hasattr(self, 'norm_pre'):
            x = self.norm_pre(x)

        if not self.with_cls_token:
            # Remove class token for transformer encoder input
            x = x[:, 1:]
        return x, hw_shape


    def selective_forward(self, x, begin, end):
        outs = []
        for i, layer in enumerate(self.layers):
            if i < begin:
                continue
            if i > end:
                break
            x = layer(x)
            if i in self.out_indices:
                outs.append(x)
        return x, outs

    def forward_from(self, x, blk_id):
        outs = []
        for i, layer in enumerate(self.layers):
            if i < blk_id:
                continue
            x = layer(x)
            if i in self.out_indices:
                outs.append(x)
        return outs


    def forward(self, inputs):
        B = inputs.shape[0]

        x, hw_shape = self.patch_embed(inputs)
        cls_tokens = self.cls_token.expand(B, -1, -1)

        if self.is_deit_3:
            x = self._pos_embeding(x, hw_shape, self.pos_embed)
            x = torch.cat((cls_tokens, x), dim=1)
        else:
            x = torch.cat((cls_tokens, x), dim=1)
            x = self._pos_embeding(x, hw_shape, self.pos_embed)

        if hasattr(self, 'norm_pre'):
            x = self.norm_pre(x)

        if not self.with_cls_token:
            # Remove class token for transformer encoder input
            x = x[:, 1:]

        outs = []
        for i, layer in enumerate(self.layers):
            x = layer(x)
            if i == len(self.layers) - 1:
                if self.final_norm:
                    x = self.norm1(x)
            if i in self.out_indices:
                if self.is_anchor:
                    outs.append(x)
                else:
                    if self.with_cls_token:
                        # Remove class token and reshape token for decoder head
                        out = x[:, 1:]
                    else:
                        out = x
                    B, _, C = out.shape
                    out = out.reshape(B, hw_shape[0], hw_shape[1],
                                      C).permute(0, 3, 1, 2).contiguous()
                    outs.append(out)

        if self.is_anchor:
            return outs, hw_shape
        else:
            return outs


    # def forward(self, inputs):
    #     B = inputs.shape[0]
    #
    #     x, hw_shape = self.patch_embed(inputs)
    #
    #     # stole cls_tokens impl from Phil Wang, thanks
    #     cls_tokens = self.cls_token.expand(B, -1, -1)
    #     x = torch.cat((cls_tokens, x), dim=1)
    #     x = x + self.pos_embed
    #
    #     outs = []
    #     for i, layer in enumerate(self.layers):
    #         x = layer(x)
    #         if i == len(self.layers) - 1:
    #             if self.final_norm:
    #                 x = self.norm1(x)
    #         if i in self.out_indices:
    #             out = x[:, 1:]
    #             B, _, C = out.shape
    #             out = out.reshape(B, hw_shape[0], hw_shape[1],
    #                               C).permute(0, 3, 1, 2).contiguous()
    #             outs.append(out)
    #
    #     return tuple(outs)