Spaces:
Runtime error
Runtime error
File size: 9,296 Bytes
412c852 1987539 412c852 5ae2b1c 412c852 e1f98a4 412c852 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
# Copyright (c) OpenMMLab. All rights reserved.
import os
os.system('pip install -U openmim')
os.system('mim install mmengine')
os.system('mim install "mmcv>=2.0.0"')
from argparse import ArgumentParser
import cv2
from mmengine.model.utils import revert_sync_batchnorm
from mmseg.apis import inference_model, init_model
from mmseg.apis.inference import show_result_pyplot
import torch
import time
import gradio as gr
import plotly.express as px
import json
def main():
parser = ArgumentParser()
parser.add_argument('--config', default='configs/snnet/setr_naive_512x512_160k_b16_ade20k_deit_3_s_l_224_snnetv2.py', help='Config file')
parser.add_argument('--checkpoint', help='Checkpoint file', default='setr_naive_512x512_160k_b16_ade20k_snnetv2_deit3_s_l_lora_16_iter_160000.pth')
# parser.add_argument('--video', help='Video file or webcam id')
parser.add_argument(
'--device', default='cuda:0', help='Device used for inference')
parser.add_argument(
'--palette',
default='cityscapes',
help='Color palette used for segmentation map')
parser.add_argument(
'--show', action='store_true', help='Whether to show draw result')
parser.add_argument(
'--show-wait-time', default=1, type=int, help='Wait time after imshow')
parser.add_argument(
'--output-file', default=None, type=str, help='Output video file path')
parser.add_argument(
'--output-fourcc',
default='MJPG',
type=str,
help='Fourcc of the output video')
parser.add_argument(
'--output-fps', default=30, type=int, help='FPS of the output video')
parser.add_argument(
'--output-height',
default=-1,
type=int,
help='Frame height of the output video')
parser.add_argument(
'--output-width',
default=-1,
type=int,
help='Frame width of the output video')
parser.add_argument(
'--opacity',
type=float,
default=0.5,
help='Opacity of painted segmentation map. In (0, 1] range.')
args = parser.parse_args()
# build the model from a config file and a checkpoint file
model = init_model(args.config, args.checkpoint, device=args.device)
if args.device == 'cpu':
model = revert_sync_batchnorm(model)
from mmseg.models.backbones.snnet import get_stitch_configs_bidirection
stitch_configs_info, _, _, anchor_ids, sl_ids, ls_ids, lsl_ids, sls_ids = get_stitch_configs_bidirection([12, 24])
stitch_configs_info = {i: cfg for i, cfg in enumerate(stitch_configs_info)}
with open('./model_flops/snnet_flops_setr_naive_512x512_160k_b16_ade20k_deit_3_s_l_224_snnetv2.json', 'r') as f:
flops_params = json.load(f)
with open('./results/eval_single_scale_20230507_235400.json', 'r') as f:
results = json.load(f)
config_ids = list(results.keys())
flops_res = {}
eval_res = {}
total_data = {}
for i, cfg_id in enumerate(config_ids):
flops = flops_params[cfg_id]
miou_res = results[cfg_id]['metric']['mIoU'] * 100
eval_res[int(cfg_id)] = miou_res
flops_res[int(cfg_id)] = flops / 1e9
total_data[int(cfg_id)] = [flops // 1e9, miou_res]
def visualize_stitch_pos(stitch_id):
if stitch_id == 13:
# 13 is equivalent to 0
stitch_id = 0
names = [f'ID {key}' for key in flops_res.keys()]
fig = px.scatter(x=flops_res.values(), y=eval_res.values(), hover_name=names)
fig.update_layout(
title=f"SN-Netv2 - Stitch ID - {stitch_id}",
title_x=0.5,
xaxis_title="GFLOPs",
yaxis_title="mIoU",
font=dict(
family="Courier New, monospace",
size=18,
color="RebeccaPurple"
),
legend=dict(
yanchor="bottom",
y=0.99,
xanchor="left",
x=0.01),
)
# continent, DarkSlateGrey
fig.update_traces(marker=dict(size=10,
line=dict(width=2)),
selector=dict(mode='markers'))
fig.add_scatter(x=[flops_res[stitch_id]], y=[eval_res[stitch_id]], mode='markers', marker=dict(size=15), name='Current Stitch')
return fig
def segment_video(video, stitch_id):
if stitch_id == 13:
# 13 is equivalent to 0
stitch_id = 0
model.backbone.reset_stitch_id(stitch_id)
output_video_path = './temp_video.avi'
cap = cv2.VideoCapture(video)
assert (cap.isOpened())
input_height = cap.get(cv2.CAP_PROP_FRAME_HEIGHT)
input_width = cap.get(cv2.CAP_PROP_FRAME_WIDTH)
input_fps = cap.get(cv2.CAP_PROP_FPS)
fourcc = cv2.VideoWriter_fourcc(*args.output_fourcc)
output_fps = args.output_fps if args.output_fps > 0 else input_fps
output_height = args.output_height if args.output_height > 0 else int(
input_height)
output_width = args.output_width if args.output_width > 0 else int(
input_width)
writer = cv2.VideoWriter(output_video_path, fourcc, output_fps,
(output_width, output_height), True)
try:
while True:
start_time = time.time()
flag, frame = cap.read()
if not flag:
break
# test a single image
result = inference_model(model, frame)
# blend raw image and prediction
draw_img = show_result_pyplot(model, frame, result,
show=False,
with_labels=False,
)
if draw_img.shape[0] != output_height or draw_img.shape[
1] != output_width:
draw_img = cv2.resize(draw_img,
(output_width, output_height))
writer.write(draw_img)
finally:
if writer:
writer.release()
cap.release()
fig = visualize_stitch_pos(stitch_id)
return output_video_path, fig
def segment_image(image, stitch_id):
if stitch_id == 13:
# 13 is equivalent to 0
stitch_id = 0
model.backbone.reset_stitch_id(stitch_id)
result = inference_model(model, image)
draw_img = show_result_pyplot(model, image, result,
show=False,
with_labels=True,
)
fig = visualize_stitch_pos(stitch_id)
return draw_img, fig
with gr.Blocks() as image_demo:
with gr.Row():
with gr.Column():
image_input = gr.Image(label='Input Image')
stitch_slider = gr.Slider(minimum=0, maximum=134, step=1, label="Stitch ID")
with gr.Row():
clear_button = gr.ClearButton()
submit_button = gr.Button()
with gr.Column():
image_output = gr.Image(label='Segmentation Results')
stitch_plot = gr.Plot(label='Stitch Position')
submit_button.click(
fn=segment_image,
inputs=[image_input, stitch_slider],
outputs=[image_output, stitch_plot],
)
stitch_slider.change(
fn=visualize_stitch_pos,
inputs=[stitch_slider],
outputs=[stitch_plot],
show_progress=False
)
clear_button.click(
lambda: [None, 0, None, None],
outputs=[image_input, stitch_slider, image_output, stitch_plot],
)
gr.Examples(
[
['./demo_1.jpg', 0],
['./demo_2.jpg', 1],
['./demo_3.jpg', 93],
['./demo_4.jpg', 3],
],
inputs=[
image_input,
stitch_slider
],
outputs=[
image_input,
stitch_plot
],
)
with gr.Blocks() as demo:
with gr.Column():
gr.HTML("""
<h1 align="center" style=" display: flex; flex-direction: row; justify-content: center; font-size: 25pt; ">Stitched ViTs are Flexible Vision Backbones</h1>
<div align="center"> <img align="center" src='file/gradio_banner.png' width="70%"> </div>
<h3 align="center" >This is the semantic segmentation demo page of SN-Netv2, a flexible vision backbone that allows for 100+ runtime speed and performance trade-offs. You can also run this gradio demo on your local GPUs at <a href="https://github.com/ziplab/SN-Netv2">https://github.com/ziplab/SN-Netv2</a>, Paper link: <a href="https://arxiv.org/abs/2307.00154">https://arxiv.org/abs/2307.00154</a>.</h3>
""")
tabbed_page = gr.TabbedInterface([image_demo,], ['Image'])
demo.launch(allowed_paths=['./'])
if __name__ == '__main__':
main()
|