File size: 2,342 Bytes
412c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# dataset settings
dataset_type = 'iSAIDDataset'
data_root = 'data/iSAID'
"""
This crop_size setting is followed by the implementation of
`PointFlow: Flowing Semantics Through Points for Aerial Image
Segmentation <https://arxiv.org/pdf/2103.06564.pdf>`_.
"""

crop_size = (896, 896)

train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations'),
    dict(
        type='RandomResize',
        scale=(896, 896),
        ratio_range=(0.5, 2.0),
        keep_ratio=True),
    dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
    dict(type='RandomFlip', prob=0.5),
    dict(type='PhotoMetricDistortion'),
    dict(type='PackSegInputs')
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='Resize', scale=(896, 896), keep_ratio=True),
    # add loading annotation after ``Resize`` because ground truth
    # does not need to do resize data transform
    dict(type='LoadAnnotations'),
    dict(type='PackSegInputs')
]
img_ratios = [0.5, 0.75, 1.0, 1.25, 1.5, 1.75]
tta_pipeline = [
    dict(type='LoadImageFromFile', backend_args=None),
    dict(
        type='TestTimeAug',
        transforms=[
            [
                dict(type='Resize', scale_factor=r, keep_ratio=True)
                for r in img_ratios
            ],
            [
                dict(type='RandomFlip', prob=0., direction='horizontal'),
                dict(type='RandomFlip', prob=1., direction='horizontal')
            ], [dict(type='LoadAnnotations')], [dict(type='PackSegInputs')]
        ])
]
train_dataloader = dict(
    batch_size=4,
    num_workers=4,
    persistent_workers=True,
    sampler=dict(type='InfiniteSampler', shuffle=True),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        data_prefix=dict(
            img_path='img_dir/train', seg_map_path='ann_dir/train'),
        pipeline=train_pipeline))
val_dataloader = dict(
    batch_size=1,
    num_workers=4,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        data_prefix=dict(img_path='img_dir/val', seg_map_path='ann_dir/val'),
        pipeline=test_pipeline))
test_dataloader = val_dataloader

val_evaluator = dict(type='IoUMetric', iou_metrics=['mIoU'])
test_evaluator = val_evaluator