File size: 6,365 Bytes
412c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
Models:
- Name: convnext-tiny_upernet_8xb2-amp-160k_ade20k-512x512
  In Collection: UPerNet
  Results:
    Task: Semantic Segmentation
    Dataset: ADE20K
    Metrics:
      mIoU: 46.11
      mIoU(ms+flip): 46.62
  Config: configs/convnext/convnext-tiny_upernet_8xb2-amp-160k_ade20k-512x512.py
  Metadata:
    Training Data: ADE20K
    Batch Size: 16
    Architecture:
    - ConvNeXt-T
    - UPerNet
    Training Resources: 8x V100 GPUS
    Memory (GB): 4.23
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth
  Training log: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553.log.json
  Paper:
    Title: A ConvNet for the 2020s
    URL: https://arxiv.org/abs/2201.03545
  Code: https://github.com/open-mmlab/mmclassification/blob/v0.20.1/mmcls/models/backbones/convnext.py#L133
  Framework: PyTorch
- Name: convnext-small_upernet_8xb2-amp-160k_ade20k-512x512
  In Collection: UPerNet
  Results:
    Task: Semantic Segmentation
    Dataset: ADE20K
    Metrics:
      mIoU: 48.56
      mIoU(ms+flip): 49.02
  Config: configs/convnext/convnext-small_upernet_8xb2-amp-160k_ade20k-512x512.py
  Metadata:
    Training Data: ADE20K
    Batch Size: 16
    Architecture:
    - ConvNeXt-S
    - UPerNet
    Training Resources: 8x V100 GPUS
    Memory (GB): 5.16
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth
  Training log: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208.log.json
  Paper:
    Title: A ConvNet for the 2020s
    URL: https://arxiv.org/abs/2201.03545
  Code: https://github.com/open-mmlab/mmclassification/blob/v0.20.1/mmcls/models/backbones/convnext.py#L133
  Framework: PyTorch
- Name: convnext-base_upernet_8xb2-amp-160k_ade20k-512x512
  In Collection: UPerNet
  Results:
    Task: Semantic Segmentation
    Dataset: ADE20K
    Metrics:
      mIoU: 48.71
      mIoU(ms+flip): 49.54
  Config: configs/convnext/convnext-base_upernet_8xb2-amp-160k_ade20k-512x512.py
  Metadata:
    Training Data: ADE20K
    Batch Size: 16
    Architecture:
    - ConvNeXt-B
    - UPerNet
    Training Resources: 8x V100 GPUS
    Memory (GB): 6.33
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth
  Training log: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227.log.json
  Paper:
    Title: A ConvNet for the 2020s
    URL: https://arxiv.org/abs/2201.03545
  Code: https://github.com/open-mmlab/mmclassification/blob/v0.20.1/mmcls/models/backbones/convnext.py#L133
  Framework: PyTorch
- Name: convnext-base_upernet_8xb2-amp-160k_ade20k-640x640
  In Collection: UPerNet
  Results:
    Task: Semantic Segmentation
    Dataset: ADE20K
    Metrics:
      mIoU: 52.13
      mIoU(ms+flip): 52.66
  Config: configs/convnext/convnext-base_upernet_8xb2-amp-160k_ade20k-640x640.py
  Metadata:
    Training Data: ADE20K
    Batch Size: 16
    Architecture:
    - ConvNeXt-B
    - UPerNet
    Training Resources: 8x V100 GPUS
    Memory (GB): 8.53
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_640x640_160k_ade20k/upernet_convnext_base_fp16_640x640_160k_ade20k_20220227_182859-9280e39b.pth
  Training log: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_640x640_160k_ade20k/upernet_convnext_base_fp16_640x640_160k_ade20k_20220227_182859.log.json
  Paper:
    Title: A ConvNet for the 2020s
    URL: https://arxiv.org/abs/2201.03545
  Code: https://github.com/open-mmlab/mmclassification/blob/v0.20.1/mmcls/models/backbones/convnext.py#L133
  Framework: PyTorch
- Name: convnext-large_upernet_8xb2-amp-160k_ade20k-640x640
  In Collection: UPerNet
  Results:
    Task: Semantic Segmentation
    Dataset: ADE20K
    Metrics:
      mIoU: 53.16
      mIoU(ms+flip): 53.38
  Config: configs/convnext/convnext-large_upernet_8xb2-amp-160k_ade20k-640x640.py
  Metadata:
    Training Data: ADE20K
    Batch Size: 16
    Architecture:
    - ConvNeXt-L
    - UPerNet
    Training Resources: 8x V100 GPUS
    Memory (GB): 12.08
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth
  Training log: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532.log.json
  Paper:
    Title: A ConvNet for the 2020s
    URL: https://arxiv.org/abs/2201.03545
  Code: https://github.com/open-mmlab/mmclassification/blob/v0.20.1/mmcls/models/backbones/convnext.py#L133
  Framework: PyTorch
- Name: convnext-xlarge_upernet_8xb2-amp-160k_ade20k-640x640
  In Collection: UPerNet
  Results:
    Task: Semantic Segmentation
    Dataset: ADE20K
    Metrics:
      mIoU: 53.58
      mIoU(ms+flip): 54.11
  Config: configs/convnext/convnext-xlarge_upernet_8xb2-amp-160k_ade20k-640x640.py
  Metadata:
    Training Data: ADE20K
    Batch Size: 16
    Architecture:
    - ConvNeXt-XL
    - UPerNet
    Training Resources: 8x V100 GPUS
    Memory (GB): 26.16
  Weights: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth
  Training log: https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344.log.json
  Paper:
    Title: A ConvNet for the 2020s
    URL: https://arxiv.org/abs/2201.03545
  Code: https://github.com/open-mmlab/mmclassification/blob/v0.20.1/mmcls/models/backbones/convnext.py#L133
  Framework: PyTorch