Spaces:
Runtime error
Runtime error
File size: 2,084 Bytes
412c852 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
_base_ = [
'../_base_/models/deeplabv3_r50-d8.py', '../_base_/default_runtime.py',
'../_base_/schedules/schedule_20k.py'
]
# dataset settings
dataset_type = 'DSDLSegDataset'
data_root = 'data/PASCAL_VOC2012'
img_prefix = 'raw/VOCdevkit/VOC2012'
train_ann = 'dsdl/dsdl_SemSeg_full/set-train/train.yaml'
val_ann = 'dsdl/dsdl_SemSeg_full/set-val/val.yaml'
crop_size = (512, 512)
train_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='LoadAnnotations'),
dict(
type='RandomResize',
scale=(2048, 512),
ratio_range=(0.5, 2.0),
keep_ratio=True),
dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
dict(type='RandomFlip', prob=0.5),
dict(type='PhotoMetricDistortion'),
dict(type='PackSegInputs')
]
test_pipeline = [
dict(type='LoadImageFromFile'),
dict(type='Resize', scale=(2048, 512), keep_ratio=True),
# add loading annotation after ``Resize`` because ground truth
# does not need to do resize data transform
dict(type='LoadAnnotations'),
dict(type='PackSegInputs')
]
train_dataloader = dict(
batch_size=4,
num_workers=4,
persistent_workers=True,
sampler=dict(type='InfiniteSampler', shuffle=True),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(img_path=img_prefix, seg_map_path=img_prefix),
ann_file=train_ann,
pipeline=train_pipeline))
val_dataloader = dict(
batch_size=1,
num_workers=4,
persistent_workers=True,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type=dataset_type,
data_root=data_root,
data_prefix=dict(img_path=img_prefix, seg_map_path=img_prefix),
ann_file=val_ann,
pipeline=test_pipeline))
test_dataloader = val_dataloader
val_evaluator = dict(type='IoUMetric', iou_metrics=['mIoU'])
test_evaluator = val_evaluator
data_preprocessor = dict(size=crop_size)
model = dict(
data_preprocessor=data_preprocessor,
decode_head=dict(num_classes=21),
auxiliary_head=dict(num_classes=21))
|