File size: 7,098 Bytes
412c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
_base_ = ['../_base_/default_runtime.py', '../_base_/datasets/ade20k.py']

custom_imports = dict(imports='mmdet.models', allow_failed_imports=False)

crop_size = (512, 512)
data_preprocessor = dict(
    type='SegDataPreProcessor',
    mean=[123.675, 116.28, 103.53],
    std=[58.395, 57.12, 57.375],
    bgr_to_rgb=True,
    pad_val=0,
    seg_pad_val=255,
    size=crop_size,
    test_cfg=dict(size_divisor=32))
num_classes = 150
model = dict(
    type='EncoderDecoder',
    data_preprocessor=data_preprocessor,
    backbone=dict(
        type='ResNet',
        depth=50,
        deep_stem=False,
        num_stages=4,
        out_indices=(0, 1, 2, 3),
        frozen_stages=-1,
        norm_cfg=dict(type='SyncBN', requires_grad=False),
        style='pytorch',
        init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
    decode_head=dict(
        type='Mask2FormerHead',
        in_channels=[256, 512, 1024, 2048],
        strides=[4, 8, 16, 32],
        feat_channels=256,
        out_channels=256,
        num_classes=num_classes,
        num_queries=100,
        num_transformer_feat_level=3,
        align_corners=False,
        pixel_decoder=dict(
            type='mmdet.MSDeformAttnPixelDecoder',
            num_outs=3,
            norm_cfg=dict(type='GN', num_groups=32),
            act_cfg=dict(type='ReLU'),
            encoder=dict(  # DeformableDetrTransformerEncoder
                num_layers=6,
                layer_cfg=dict(  # DeformableDetrTransformerEncoderLayer
                    self_attn_cfg=dict(  # MultiScaleDeformableAttention
                        embed_dims=256,
                        num_heads=8,
                        num_levels=3,
                        num_points=4,
                        im2col_step=64,
                        dropout=0.0,
                        batch_first=True,
                        norm_cfg=None,
                        init_cfg=None),
                    ffn_cfg=dict(
                        embed_dims=256,
                        feedforward_channels=1024,
                        num_fcs=2,
                        ffn_drop=0.0,
                        act_cfg=dict(type='ReLU', inplace=True))),
                init_cfg=None),
            positional_encoding=dict(  # SinePositionalEncoding
                num_feats=128, normalize=True),
            init_cfg=None),
        enforce_decoder_input_project=False,
        positional_encoding=dict(  # SinePositionalEncoding
            num_feats=128, normalize=True),
        transformer_decoder=dict(  # Mask2FormerTransformerDecoder
            return_intermediate=True,
            num_layers=9,
            layer_cfg=dict(  # Mask2FormerTransformerDecoderLayer
                self_attn_cfg=dict(  # MultiheadAttention
                    embed_dims=256,
                    num_heads=8,
                    attn_drop=0.0,
                    proj_drop=0.0,
                    dropout_layer=None,
                    batch_first=True),
                cross_attn_cfg=dict(  # MultiheadAttention
                    embed_dims=256,
                    num_heads=8,
                    attn_drop=0.0,
                    proj_drop=0.0,
                    dropout_layer=None,
                    batch_first=True),
                ffn_cfg=dict(
                    embed_dims=256,
                    feedforward_channels=2048,
                    num_fcs=2,
                    act_cfg=dict(type='ReLU', inplace=True),
                    ffn_drop=0.0,
                    dropout_layer=None,
                    add_identity=True)),
            init_cfg=None),
        loss_cls=dict(
            type='mmdet.CrossEntropyLoss',
            use_sigmoid=False,
            loss_weight=2.0,
            reduction='mean',
            class_weight=[1.0] * num_classes + [0.1]),
        loss_mask=dict(
            type='mmdet.CrossEntropyLoss',
            use_sigmoid=True,
            reduction='mean',
            loss_weight=5.0),
        loss_dice=dict(
            type='mmdet.DiceLoss',
            use_sigmoid=True,
            activate=True,
            reduction='mean',
            naive_dice=True,
            eps=1.0,
            loss_weight=5.0),
        train_cfg=dict(
            num_points=12544,
            oversample_ratio=3.0,
            importance_sample_ratio=0.75,
            assigner=dict(
                type='mmdet.HungarianAssigner',
                match_costs=[
                    dict(type='mmdet.ClassificationCost', weight=2.0),
                    dict(
                        type='mmdet.CrossEntropyLossCost',
                        weight=5.0,
                        use_sigmoid=True),
                    dict(
                        type='mmdet.DiceCost',
                        weight=5.0,
                        pred_act=True,
                        eps=1.0)
                ]),
            sampler=dict(type='mmdet.MaskPseudoSampler'))),
    train_cfg=dict(),
    test_cfg=dict(mode='whole'))

# dataset config
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', reduce_zero_label=True),
    dict(
        type='RandomChoiceResize',
        scales=[int(512 * x * 0.1) for x in range(5, 21)],
        resize_type='ResizeShortestEdge',
        max_size=2048),
    dict(type='RandomCrop', crop_size=crop_size, cat_max_ratio=0.75),
    dict(type='RandomFlip', prob=0.5),
    dict(type='PhotoMetricDistortion'),
    dict(type='PackSegInputs')
]
train_dataloader = dict(batch_size=2, dataset=dict(pipeline=train_pipeline))

# optimizer
embed_multi = dict(lr_mult=1.0, decay_mult=0.0)
optimizer = dict(
    type='AdamW', lr=0.0001, weight_decay=0.05, eps=1e-8, betas=(0.9, 0.999))
optim_wrapper = dict(
    type='OptimWrapper',
    optimizer=optimizer,
    clip_grad=dict(max_norm=0.01, norm_type=2),
    paramwise_cfg=dict(
        custom_keys={
            'backbone': dict(lr_mult=0.1, decay_mult=1.0),
            'query_embed': embed_multi,
            'query_feat': embed_multi,
            'level_embed': embed_multi,
        },
        norm_decay_mult=0.0))
# learning policy
param_scheduler = [
    dict(
        type='PolyLR',
        eta_min=0,
        power=0.9,
        begin=0,
        end=160000,
        by_epoch=False)
]

# training schedule for 160k
train_cfg = dict(
    type='IterBasedTrainLoop', max_iters=160000, val_interval=5000)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
default_hooks = dict(
    timer=dict(type='IterTimerHook'),
    logger=dict(type='LoggerHook', interval=50, log_metric_by_epoch=False),
    param_scheduler=dict(type='ParamSchedulerHook'),
    checkpoint=dict(
        type='CheckpointHook', by_epoch=False, interval=5000,
        save_best='mIoU'),
    sampler_seed=dict(type='DistSamplerSeedHook'),
    visualization=dict(type='SegVisualizationHook'))

# Default setting for scaling LR automatically
#   - `enable` means enable scaling LR automatically
#       or not by default.
#   - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=16)