File size: 1,885 Bytes
412c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
_base_ = ['./mask2former_r50_8xb2-90k_cityscapes-512x1024.py']
pretrained = 'https://download.openmmlab.com/mmsegmentation/v0.5/pretrain/swin/swin_tiny_patch4_window7_224_20220317-1cdeb081.pth'  # noqa
depths = [2, 2, 6, 2]
model = dict(
    backbone=dict(
        _delete_=True,
        type='SwinTransformer',
        embed_dims=96,
        depths=depths,
        num_heads=[3, 6, 12, 24],
        window_size=7,
        mlp_ratio=4,
        qkv_bias=True,
        qk_scale=None,
        drop_rate=0.,
        attn_drop_rate=0.,
        drop_path_rate=0.3,
        patch_norm=True,
        out_indices=(0, 1, 2, 3),
        with_cp=False,
        frozen_stages=-1,
        init_cfg=dict(type='Pretrained', checkpoint=pretrained)),
    decode_head=dict(in_channels=[96, 192, 384, 768]))

# set all layers in backbone to lr_mult=0.1
# set all norm layers, position_embeding,
# query_embeding, level_embeding to decay_multi=0.0
backbone_norm_multi = dict(lr_mult=0.1, decay_mult=0.0)
backbone_embed_multi = dict(lr_mult=0.1, decay_mult=0.0)
embed_multi = dict(lr_mult=1.0, decay_mult=0.0)
custom_keys = {
    'backbone': dict(lr_mult=0.1, decay_mult=1.0),
    'backbone.patch_embed.norm': backbone_norm_multi,
    'backbone.norm': backbone_norm_multi,
    'absolute_pos_embed': backbone_embed_multi,
    'relative_position_bias_table': backbone_embed_multi,
    'query_embed': embed_multi,
    'query_feat': embed_multi,
    'level_embed': embed_multi
}
custom_keys.update({
    f'backbone.stages.{stage_id}.blocks.{block_id}.norm': backbone_norm_multi
    for stage_id, num_blocks in enumerate(depths)
    for block_id in range(num_blocks)
})
custom_keys.update({
    f'backbone.stages.{stage_id}.downsample.norm': backbone_norm_multi
    for stage_id in range(len(depths) - 1)
})
# optimizer
optim_wrapper = dict(
    paramwise_cfg=dict(custom_keys=custom_keys, norm_decay_mult=0.0))