File size: 20,876 Bytes
412c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
# OCRNet

> [Object-Contextual Representations for Semantic Segmentation](https://arxiv.org/abs/1909.11065)

## Introduction

<!-- [ALGORITHM] -->

<a href="https://github.com/openseg-group/OCNet.pytorch">Official Repo</a>

<a href="https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/ocr_head.py#L86">Code Snippet</a>

## Abstract

<!-- [ABSTRACT] -->

In this paper, we address the problem of semantic segmentation and focus on the context aggregation strategy for robust segmentation. Our motivation is that the label of a pixel is the category of the object that the pixel belongs to. We present a simple yet effective approach, object-contextual representations, characterizing a pixel by exploiting the representation of the corresponding object class. First, we construct object regions based on a feature map supervised by the ground-truth segmentation, and then compute the object region representations. Second, we compute the representation similarity between each pixel and each object region, and augment the representation of each pixel with an object contextual representation, which is a weighted aggregation of all the object region representations according to their similarities with the pixel. We empirically demonstrate that the proposed approach achieves competitive performance on six challenging semantic segmentation benchmarks: Cityscapes, ADE20K, LIP, PASCAL VOC 2012, PASCAL-Context and COCO-Stuff. Notably, we achieved the \\nth{2} place on the Cityscapes leader-board with a single model.

<!-- [IMAGE] -->

<div align=center>
<img src="https://user-images.githubusercontent.com/24582831/142902197-b06b1e04-57ab-44ac-adc8-cea6695bb236.png" width="70%"/>
</div>

## Results and models

### Cityscapes

#### HRNet backbone

| Method | Backbone           | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                                        | download                                                                                                                                                                                                                                                                                                                                                         |
| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| OCRNet | HRNetV2p-W18-Small | 512x1024  |   40000 | 3.5      | 10.45          | A100   | 76.61 |         78.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024_20230227_145026-6c052a14.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024/ocrnet_hr18s_4xb2-40k_cityscapes-512x1024_20230227_145026.json) |
| OCRNet | HRNetV2p-W18       | 512x1024  |   40000 | 4.7      | 7.50           | V100   | 77.72 |         79.49 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr18_4xb2-40k_cityscapes-512x1024.py)   | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_40k_cityscapes/ocrnet_hr18_512x1024_40k_cityscapes_20200601_033320-401c5bdd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_40k_cityscapes/ocrnet_hr18_512x1024_40k_cityscapes_20200601_033320.log.json)                     |
| OCRNet | HRNetV2p-W48       | 512x1024  |   40000 | 8        | 4.22           | V100   | 80.58 |         81.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr48_4xb2-40k_cityscapes-512x1024.pyy)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_40k_cityscapes/ocrnet_hr48_512x1024_40k_cityscapes_20200601_033336-55b32491.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_40k_cityscapes/ocrnet_hr48_512x1024_40k_cityscapes_20200601_033336.log.json)                     |
| OCRNet | HRNetV2p-W18-Small | 512x1024  |   80000 | -        | -              | V100   | 77.16 |         78.66 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr18s_4xb2-80k_cityscapes-512x1024.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_80k_cityscapes/ocrnet_hr18s_512x1024_80k_cityscapes_20200601_222735-55979e63.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_80k_cityscapes/ocrnet_hr18s_512x1024_80k_cityscapes_20200601_222735.log.json)                 |
| OCRNet | HRNetV2p-W18       | 512x1024  |   80000 | -        | -              | V100   | 78.57 |         80.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr18_4xb2-80k_cityscapes-512x1024.py)   | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_80k_cityscapes/ocrnet_hr18_512x1024_80k_cityscapes_20200614_230521-c2e1dd4a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_80k_cityscapes/ocrnet_hr18_512x1024_80k_cityscapes_20200614_230521.log.json)                     |
| OCRNet | HRNetV2p-W48       | 512x1024  |   80000 | -        | -              | V100   | 80.70 |         81.87 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr48_4xb2-80k_cityscapes-512x1024.py)   | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_80k_cityscapes/ocrnet_hr48_512x1024_80k_cityscapes_20200601_222752-9076bcdf.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_80k_cityscapes/ocrnet_hr48_512x1024_80k_cityscapes_20200601_222752.log.json)                     |
| OCRNet | HRNetV2p-W18-Small | 512x1024  |  160000 | -        | -              | V100   | 78.45 |         79.97 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr18s_4xb2-160k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_160k_cityscapes/ocrnet_hr18s_512x1024_160k_cityscapes_20200602_191005-f4a7af28.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x1024_160k_cityscapes/ocrnet_hr18s_512x1024_160k_cityscapes_20200602_191005.log.json)             |
| OCRNet | HRNetV2p-W18       | 512x1024  |  160000 | -        | -              | V100   | 79.47 |         80.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr18_4xb2-160k_cityscapes-512x1024.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_160k_cityscapes/ocrnet_hr18_512x1024_160k_cityscapes_20200602_191001-b9172d0c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x1024_160k_cityscapes/ocrnet_hr18_512x1024_160k_cityscapes_20200602_191001.log.json)                 |
| OCRNet | HRNetV2p-W48       | 512x1024  |  160000 | -        | -              | V100   | 81.35 |         82.70 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr48_4xb2-160k_cityscapes-512x1024.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_160k_cityscapes/ocrnet_hr48_512x1024_160k_cityscapes_20200602_191037-dfbf1b0c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x1024_160k_cityscapes/ocrnet_hr48_512x1024_160k_cityscapes_20200602_191037.log.json)                 |

#### ResNet backbone

| Method | Backbone | Crop Size | Batch Size | Lr schd | Mem (GB) | Inf time (fps) | Device | mIoU  | mIoU(ms+flip) | config                                                                                                                         | download                                                                                                                                                                                                                                                                                                                                                                 |
| ------ | -------- | --------- | ---------- | ------- | -------- | -------------- | ------ | ----- | ------------: | ------------------------------------------------------------------------------------------------------------------------------ | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| OCRNet | R-101-D8 | 512x1024  | 8          | 40000   | -        | -              | V100   | 80.09 |             - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes/ocrnet_r101-d8_512x1024_40k_b8_cityscapes_20200717_110721-02ac0f13.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b8_cityscapes/ocrnet_r101-d8_512x1024_40k_b8_cityscapes_20200717_110721.log.json)     |
| OCRNet | R-101-D8 | 512x1024  | 16         | 40000   | 8.8      | 3.02           | V100   | 80.30 |             - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_r101-d8_8xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b16_cityscapes/ocrnet_r101-d8_512x1024_40k_b16_cityscapes_20200723_193726-db500f80.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_40k_b16_cityscapes/ocrnet_r101-d8_512x1024_40k_b16_cityscapes_20200723_193726.log.json) |
| OCRNet | R-101-D8 | 512x1024  | 16         | 80000   | 8.8      | 3.02           | V100   | 80.81 |             - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_r101-d8_8xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_80k_b16_cityscapes/ocrnet_r101-d8_512x1024_80k_b16_cityscapes_20200723_192421-78688424.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_r101-d8_512x1024_80k_b16_cityscapes/ocrnet_r101-d8_512x1024_80k_b16_cityscapes_20200723_192421.log.json) |

### ADE20K

| Method | Backbone           | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                                  | download                                                                                                                                                                                                                                                                                                                         |
| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| OCRNet | HRNetV2p-W18-Small | 512x512   |   80000 | 6.7      | 28.98          | V100   | 35.06 |         35.80 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr18s_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_80k_ade20k/ocrnet_hr18s_512x512_80k_ade20k_20200615_055600-e80b62af.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_80k_ade20k/ocrnet_hr18s_512x512_80k_ade20k_20200615_055600.log.json)     |
| OCRNet | HRNetV2p-W18       | 512x512   |   80000 | 7.9      | 18.93          | V100   | 37.79 |         39.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr18_4xb4-80k_ade20k-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_80k_ade20k/ocrnet_hr18_512x512_80k_ade20k_20200615_053157-d173d83b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_80k_ade20k/ocrnet_hr18_512x512_80k_ade20k_20200615_053157.log.json)         |
| OCRNet | HRNetV2p-W48       | 512x512   |   80000 | 11.2     | 16.99          | V100   | 43.00 |         44.30 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr48_4xb4-80k_ade20k-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_80k_ade20k/ocrnet_hr48_512x512_80k_ade20k_20200615_021518-d168c2d1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_80k_ade20k/ocrnet_hr48_512x512_80k_ade20k_20200615_021518.log.json)         |
| OCRNet | HRNetV2p-W18-Small | 512x512   |  160000 | -        | -              | V100   | 37.19 |         38.40 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr18s_4xb4-80k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_160k_ade20k/ocrnet_hr18s_512x512_160k_ade20k_20200615_184505-8e913058.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_160k_ade20k/ocrnet_hr18s_512x512_160k_ade20k_20200615_184505.log.json) |
| OCRNet | HRNetV2p-W18       | 512x512   |  160000 | -        | -              | V100   | 39.32 |         40.80 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr18_4xb4-80k_ade20k-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_160k_ade20k/ocrnet_hr18_512x512_160k_ade20k_20200615_200940-d8fcd9d1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_160k_ade20k/ocrnet_hr18_512x512_160k_ade20k_20200615_200940.log.json)     |
| OCRNet | HRNetV2p-W48       | 512x512   |  160000 | -        | -              | V100   | 43.25 |         44.88 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr48_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_160k_ade20k/ocrnet_hr48_512x512_160k_ade20k_20200615_184705-a073726d.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_160k_ade20k/ocrnet_hr48_512x512_160k_ade20k_20200615_184705.log.json)     |

### Pascal VOC 2012 + Aug

| Method | Backbone           | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                                    | download                                                                                                                                                                                                                                                                                                                             |
| ------ | ------------------ | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| OCRNet | HRNetV2p-W18-Small | 512x512   |   20000 | 3.5      | 31.55          | V100   | 71.70 |         73.84 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr18s_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_20k_voc12aug/ocrnet_hr18s_512x512_20k_voc12aug_20200617_233913-02b04fcb.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_20k_voc12aug/ocrnet_hr18s_512x512_20k_voc12aug_20200617_233913.log.json) |
| OCRNet | HRNetV2p-W18       | 512x512   |   20000 | 4.7      | 19.91          | V100   | 74.75 |         77.11 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr18_4xb4-20k_voc12aug-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_20k_voc12aug/ocrnet_hr18_512x512_20k_voc12aug_20200617_233932-8954cbb7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_20k_voc12aug/ocrnet_hr18_512x512_20k_voc12aug_20200617_233932.log.json)     |
| OCRNet | HRNetV2p-W48       | 512x512   |   20000 | 8.1      | 17.83          | V100   | 77.72 |         79.87 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr48_4xb4-20k_voc12aug-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_20k_voc12aug/ocrnet_hr48_512x512_20k_voc12aug_20200617_233932-9e82080a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_20k_voc12aug/ocrnet_hr48_512x512_20k_voc12aug_20200617_233932.log.json)     |
| OCRNet | HRNetV2p-W18-Small | 512x512   |   40000 | -        | -              | V100   | 72.76 |         74.60 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr18s_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_40k_voc12aug/ocrnet_hr18s_512x512_40k_voc12aug_20200614_002025-42b587ac.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18s_512x512_40k_voc12aug/ocrnet_hr18s_512x512_40k_voc12aug_20200614_002025.log.json) |
| OCRNet | HRNetV2p-W18       | 512x512   |   40000 | -        | -              | V100   | 74.98 |         77.40 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr18_4xb4-40k_voc12aug-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_40k_voc12aug/ocrnet_hr18_512x512_40k_voc12aug_20200614_015958-714302be.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr18_512x512_40k_voc12aug/ocrnet_hr18_512x512_40k_voc12aug_20200614_015958.log.json)     |
| OCRNet | HRNetV2p-W48       | 512x512   |   40000 | -        | -              | V100   | 77.14 |         79.71 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/ocrnet/ocrnet_hr48_4xb4-40k_voc12aug-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_40k_voc12aug/ocrnet_hr48_512x512_40k_voc12aug_20200614_015958-255bc5ce.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/ocrnet/ocrnet_hr48_512x512_40k_voc12aug/ocrnet_hr48_512x512_40k_voc12aug_20200614_015958.log.json)     |

## Citation

```bibtex
@article{YuanW18,
  title={Ocnet: Object context network for scene parsing},
  author={Yuhui Yuan and Jingdong Wang},
  booktitle={arXiv preprint arXiv:1809.00916},
  year={2018}
}

@article{YuanCW20,
  title={Object-Contextual Representations for Semantic Segmentation},
  author={Yuhui Yuan and Xilin Chen and Jingdong Wang},
  booktitle={ECCV},
  year={2020}
}
```