File size: 14,625 Bytes
412c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
# PSANet

> [PSANet: Point-wise Spatial Attention Network for Scene Parsing](https://openaccess.thecvf.com/content_ECCV_2018/papers/Hengshuang_Zhao_PSANet_Point-wise_Spatial_ECCV_2018_paper.pdf)

## Introduction

<!-- [ALGORITHM] -->

<a href="https://github.com/hszhao/PSANet">Official Repo</a>

<a href="https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psa_head.py#L18">Code Snippet</a>

## Abstract

<!-- [ABSTRACT] -->

We notice information flow in convolutional neural networksis  restricted  inside  local  neighborhood  regions  due  to  the  physical  de-sign  of  convolutional  filters,  which  limits  the  overall  understanding  ofcomplex scenes. In this paper, we propose thepoint-wise  spatial  atten-tion network(PSANet) to relax the local neighborhood constraint. Eachposition on the feature map is connected to all the other ones througha self-adaptively learned attention mask. Moreover, information propa-gation in bi-direction for scene parsing is enabled. Information at otherpositions can be collected to help the prediction of the current positionand  vice  versa,  information  at  the  current  position  can  be  distributedto assist the prediction of other ones. Our proposed approach achievestop performance on various competitive scene parsing datasets, includ-ing  ADE20K,  PASCAL  VOC  2012  and  Cityscapes,  demonstrating  itseffectiveness and generality.

<!-- [IMAGE] -->

<div align=center>
<img src="https://user-images.githubusercontent.com/24582831/142902367-0f29e8cb-5ac0-434b-98c4-b2af7c9c2e58.png" width="70%"/>
</div>

## Results and models

### Cityscapes

| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                                         | download                                                                                                                                                                                                                                                                                                                                                 |
| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| PSANet | R-50-D8  | 512x1024  |   40000 | 7        | 3.17           | V100   | 77.63 |         79.04 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/psanet/psanet_r50-d8_4xb2-40k_cityscapes-512x1024.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_40k_cityscapes/psanet_r50-d8_512x1024_40k_cityscapes_20200606_103117-99fac37c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_40k_cityscapes/psanet_r50-d8_512x1024_40k_cityscapes_20200606_103117.log.json)     |
| PSANet | R-101-D8 | 512x1024  |   40000 | 10.5     | 2.20           | V100   | 79.14 |         80.19 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/psanet/psanet_r101-d8_4xb2-40k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_40k_cityscapes/psanet_r101-d8_512x1024_40k_cityscapes_20200606_001418-27b9cfa7.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_40k_cityscapes/psanet_r101-d8_512x1024_40k_cityscapes_20200606_001418.log.json) |
| PSANet | R-50-D8  | 769x769   |   40000 | 7.9      | 1.40           | V100   | 77.99 |         79.64 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/psanet/psanet_r50-d8_4xb2-40k_cityscapes-769x769.py)   | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_40k_cityscapes/psanet_r50-d8_769x769_40k_cityscapes_20200530_033717-d5365506.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_40k_cityscapes/psanet_r50-d8_769x769_40k_cityscapes_20200530_033717.log.json)         |
| PSANet | R-101-D8 | 769x769   |   40000 | 11.9     | 0.98           | V100   | 78.43 |         80.26 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/psanet/psanet_r101-d8_4xb2-40k_cityscapes-769x769.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_40k_cityscapes/psanet_r101-d8_769x769_40k_cityscapes_20200530_035107-997da1e6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_40k_cityscapes/psanet_r101-d8_769x769_40k_cityscapes_20200530_035107.log.json)     |
| PSANet | R-50-D8  | 512x1024  |   80000 | -        | -              | V100   | 77.24 |         78.69 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/psanet/psanet_r50-d8_4xb2-80k_cityscapes-512x1024.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_80k_cityscapes/psanet_r50-d8_512x1024_80k_cityscapes_20200606_161842-ab60a24f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x1024_80k_cityscapes/psanet_r50-d8_512x1024_80k_cityscapes_20200606_161842.log.json)     |
| PSANet | R-101-D8 | 512x1024  |   80000 | -        | -              | V100   | 79.31 |         80.53 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/psanet/psanet_r101-d8_4xb2-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_80k_cityscapes/psanet_r101-d8_512x1024_80k_cityscapes_20200606_161823-0f73a169.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x1024_80k_cityscapes/psanet_r101-d8_512x1024_80k_cityscapes_20200606_161823.log.json) |
| PSANet | R-50-D8  | 769x769   |   80000 | -        | -              | V100   | 79.31 |         80.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/psanet/psanet_r50-d8_4xb2-80k_cityscapes-769x769.py)   | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_80k_cityscapes/psanet_r50-d8_769x769_80k_cityscapes_20200606_225134-fe42f49e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_769x769_80k_cityscapes/psanet_r50-d8_769x769_80k_cityscapes_20200606_225134.log.json)         |
| PSANet | R-101-D8 | 769x769   |   80000 | -        | -              | V100   | 79.69 |         80.89 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/psanet/psanet_r101-d8_4xb2-80k_cityscapes-769x769.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_80k_cityscapes/psanet_r101-d8_769x769_80k_cityscapes_20200606_214550-7665827b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_769x769_80k_cityscapes/psanet_r101-d8_769x769_80k_cityscapes_20200606_214550.log.json)     |

### ADE20K

| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                                     | download                                                                                                                                                                                                                                                                                                                                 |
| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| PSANet | R-50-D8  | 512x512   |   80000 | 9        | 18.91          | V100   | 41.14 |         41.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/psanet/psanet_r50-d8_4xb4-80k_ade20k-512x512.py)   | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_80k_ade20k/psanet_r50-d8_512x512_80k_ade20k_20200614_144141-835e4b97.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_80k_ade20k/psanet_r50-d8_512x512_80k_ade20k_20200614_144141.log.json)         |
| PSANet | R-101-D8 | 512x512   |   80000 | 12.5     | 13.13          | V100   | 43.80 |         44.75 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/psanet/psanet_r101-d8_4xb4-80k_ade20k-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_80k_ade20k/psanet_r101-d8_512x512_80k_ade20k_20200614_185117-1fab60d4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_80k_ade20k/psanet_r101-d8_512x512_80k_ade20k_20200614_185117.log.json)     |
| PSANet | R-50-D8  | 512x512   |  160000 | -        | -              | V100   | 41.67 |         42.95 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/psanet/psanet_r50-d8_4xb4-160k_ade20k-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_160k_ade20k/psanet_r50-d8_512x512_160k_ade20k_20200615_161258-148077dd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_160k_ade20k/psanet_r50-d8_512x512_160k_ade20k_20200615_161258.log.json)     |
| PSANet | R-101-D8 | 512x512   |  160000 | -        | -              | V100   | 43.74 |         45.38 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/psanet/psanet_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_160k_ade20k/psanet_r101-d8_512x512_160k_ade20k_20200615_161537-dbfa564c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_160k_ade20k/psanet_r101-d8_512x512_160k_ade20k_20200615_161537.log.json) |

### Pascal VOC 2012 + Aug

| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                                      | download                                                                                                                                                                                                                                                                                                                                     |
| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| PSANet | R-50-D8  | 512x512   |   20000 | 6.9      | 18.24          | V100   | 76.39 |         77.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/psanet/psanet_r50-d8_4xb4-20k_voc12aug-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_20k_voc12aug/psanet_r50-d8_512x512_20k_voc12aug_20200617_102413-2f1bbaa1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_20k_voc12aug/psanet_r50-d8_512x512_20k_voc12aug_20200617_102413.log.json)     |
| PSANet | R-101-D8 | 512x512   |   20000 | 10.4     | 12.63          | V100   | 77.91 |         79.30 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/psanet/psanet_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_20k_voc12aug/psanet_r101-d8_512x512_20k_voc12aug_20200617_110624-946fef11.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_20k_voc12aug/psanet_r101-d8_512x512_20k_voc12aug_20200617_110624.log.json) |
| PSANet | R-50-D8  | 512x512   |   40000 | -        | -              | V100   | 76.30 |         77.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/psanet/psanet_r50-d8_4xb4-40k_voc12aug-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_40k_voc12aug/psanet_r50-d8_512x512_40k_voc12aug_20200613_161946-f596afb5.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r50-d8_512x512_40k_voc12aug/psanet_r50-d8_512x512_40k_voc12aug_20200613_161946.log.json)     |
| PSANet | R-101-D8 | 512x512   |   40000 | -        | -              | V100   | 77.73 |         79.05 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/psanet/psanet_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_40k_voc12aug/psanet_r101-d8_512x512_40k_voc12aug_20200613_161946-1f560f9e.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/psanet/psanet_r101-d8_512x512_40k_voc12aug/psanet_r101-d8_512x512_40k_voc12aug_20200613_161946.log.json) |

## Citation

```bibtex
@inproceedings{zhao2018psanet,
  title={Psanet: Point-wise spatial attention network for scene parsing},
  author={Zhao, Hengshuang and Zhang, Yi and Liu, Shu and Shi, Jianping and Change Loy, Chen and Lin, Dahua and Jia, Jiaya},
  booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
  pages={267--283},
  year={2018}
}
```