File size: 55,967 Bytes
412c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
# PSPNet

> [Pyramid Scene Parsing Network](https://arxiv.org/abs/1612.01105)

## Introduction

<!-- [ALGORITHM] -->

<a href="https://github.com/hszhao/PSPNet">Official Repo</a>

<a href="https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/psp_head.py#L63">Code Snippet</a>

## Abstract

<!-- [ABSTRACT] -->

Scene parsing is challenging for unrestricted open vocabulary and diverse scenes. In this paper, we exploit the capability of global context information by different-region-based context aggregation through our pyramid pooling module together with the proposed pyramid scene parsing network (PSPNet). Our global prior representation is effective to produce good quality results on the scene parsing task, while PSPNet provides a superior framework for pixel-level prediction tasks. The proposed approach achieves state-of-the-art performance on various datasets. It came first in ImageNet scene parsing challenge 2016, PASCAL VOC 2012 benchmark and Cityscapes benchmark. A single PSPNet yields new record of mIoU accuracy 85.4% on PASCAL VOC 2012 and accuracy 80.2% on Cityscapes.

<!-- [IMAGE] -->

<div align=center>
<img src="https://user-images.githubusercontent.com/24582831/142902444-9f93b99e-9261-443b-a0a4-17e78eefb525.png" width="70%"/>
</div>

<div align=center >
<img alt="PSPNet-R50-D8" src="https://user-images.githubusercontent.com/47882088/209554973-66804b14-de5a-4f83-b54e-26683a91818a.jpg"/>
PSPNet-R50 D8 model structure
</div>

## Results and models

### Cityscapes

| Method        | Backbone      | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                                                   | download                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ------------- | ------------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| PSPNet        | R-50-D8       | 512x1024  |   40000 | 6.1      | 4.07           | V100   | 77.85 |         79.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py)            | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338.log.json)                                                                                 |
| PSPNet        | R-101-D8      | 512x1024  |   40000 | 9.6      | 2.68           | V100   | 78.34 |         79.74 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb2-40k_cityscapes-512x1024.py)           | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751-467e7cf4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751.log.json)                                                                             |
| PSPNet        | R-50-D8       | 769x769   |   40000 | 6.9      | 1.76           | V100   | 78.26 |         79.88 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-769x769.py)             | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_40k_cityscapes/pspnet_r50-d8_769x769_40k_cityscapes_20200606_112725-86638686.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_40k_cityscapes/pspnet_r50-d8_769x769_40k_cityscapes_20200606_112725.log.json)                                                                                     |
| PSPNet        | R-101-D8      | 769x769   |   40000 | 10.9     | 1.15           | V100   | 79.08 |         80.28 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb2-40k_cityscapes-769x769.py)            | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_40k_cityscapes/pspnet_r101-d8_769x769_40k_cityscapes_20200606_112753-61c6f5be.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_40k_cityscapes/pspnet_r101-d8_769x769_40k_cityscapes_20200606_112753.log.json)                                                                                 |
| PSPNet        | R-18-D8       | 512x1024  |   80000 | 1.7      | 15.71          | V100   | 74.87 |         76.04 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r18-d8_4xb2-80k_cityscapes-512x1024.py)            | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_512x1024_80k_cityscapes/pspnet_r18-d8_512x1024_80k_cityscapes_20201225_021458-09ffa746.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_512x1024_80k_cityscapes/pspnet_r18-d8_512x1024_80k_cityscapes-20201225_021458.log.json)                                                                                 |
| PSPNet        | R-50-D8       | 512x1024  |   80000 | -        | -              | V100   | 78.55 |         79.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb2-80k_cityscapes-512x1024.py)            | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes/pspnet_r50-d8_512x1024_80k_cityscapes_20200606_112131-2376f12b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes/pspnet_r50-d8_512x1024_80k_cityscapes_20200606_112131.log.json)                                                                                 |
| PSPNet        | R-50b-D8 rsb  | 512x1024  |   80000 | 6.2      | 3.82           | V100   | 78.47 |         79.45 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8-rsb_4xb2-adamw-80k_cityscapes-512x1024.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes/pspnet_r50-d8_rsb-pretrain_512x1024_adamw_80k_cityscapes_20220315_123238-588c30be.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_80k_cityscapes/pspnet_r50-d8_rsb-pretrain_512x1024_adamw_80k_cityscapes_20220315_123238.log.json)                                           |
| PSPNet        | R-101-D8      | 512x1024  |   80000 | -        | -              | V100   | 79.76 |         81.01 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb2-80k_cityscapes-512x1024.py)           | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes/pspnet_r101-d8_512x1024_80k_cityscapes_20200606_112211-e1e1100f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_80k_cityscapes/pspnet_r101-d8_512x1024_80k_cityscapes_20200606_112211.log.json)                                                                             |
| PSPNet (FP16) | R-101-D8      | 512x1024  |   80000 | 5.34     | 8.77           | V100   | 79.46 |             - | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb2-amp-80k_cityscapes-512x1024.py)       | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_fp16_512x1024_80k_cityscapes/pspnet_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230919-a0875e5c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_fp16_512x1024_80k_cityscapes/pspnet_r101-d8_fp16_512x1024_80k_cityscapes_20200717_230919.log.json)                                                         |
| PSPNet        | R-18-D8       | 769x769   |   80000 | 1.9      | 6.20           | V100   | 75.90 |         77.86 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r18-d8_4xb2-80k_cityscapes-769x769.py)             | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_769x769_80k_cityscapes/pspnet_r18-d8_769x769_80k_cityscapes_20201225_021458-3deefc62.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_769x769_80k_cityscapes/pspnet_r18-d8_769x769_80k_cityscapes-20201225_021458.log.json)                                                                                     |
| PSPNet        | R-50-D8       | 769x769   |   80000 | -        | -              | V100   | 79.59 |         80.69 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb2-80k_cityscapes-769x769.py)             | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_80k_cityscapes/pspnet_r50-d8_769x769_80k_cityscapes_20200606_210121-5ccf03dd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_769x769_80k_cityscapes/pspnet_r50-d8_769x769_80k_cityscapes_20200606_210121.log.json)                                                                                     |
| PSPNet        | R-101-D8      | 769x769   |   80000 | -        | -              | V100   | 79.77 |         81.06 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb2-80k_cityscapes-769x769.py)            | [model](https://download.oz1z1penmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_80k_cityscapes/pspnet_r101-d8_769x769_80k_cityscapes_20200606_225055-dba412fa.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_769x769_80k_cityscapes/pspnet_r101-d8_769x769_80k_cityscapes_20200606_225055.log.json)                                                                             |
| PSPNet        | R-18b-D8      | 512x1024  |   80000 | 1.5      | 16.28          | V100   | 74.23 |         75.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r18b-d8_4xb2-80k_cityscapes-512x1024.py)           | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18b-d8_512x1024_80k_cityscapes/pspnet_r18b-d8_512x1024_80k_cityscapes_20201226_063116-26928a60.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18b-d8_512x1024_80k_cityscapes/pspnet_r18b-d8_512x1024_80k_cityscapes-20201226_063116.log.json)                                                                             |
| PSPNet        | R-50b-D8      | 512x1024  |   80000 | 6.0      | 4.30           | V100   | 78.22 |         79.46 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50b-d8_4xb2-80k_cityscapes-512x1024.py)           | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d8_512x1024_80k_cityscapes/pspnet_r50b-d8_512x1024_80k_cityscapes_20201225_094315-6344287a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d8_512x1024_80k_cityscapes/pspnet_r50b-d8_512x1024_80k_cityscapes-20201225_094315.log.json)                                                                             |
| PSPNet        | R-101b-D8     | 512x1024  |   80000 | 9.5      | 2.76           | V100   | 79.69 |         80.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101b-d8_4xb2-80k_cityscapes-512x1024.py)          | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes_20201226_170012-3a4d38ab.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes-20201226_170012.log.json)                                                                         |
| PSPNet        | R-18b-D8      | 769x769   |   80000 | 1.7      | 6.41           | V100   | 74.92 |         76.90 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r18b-d8_4xb2-80k_cityscapes-769x769.py)            | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18b-d8_769x769_80k_cityscapes/pspnet_r18b-d8_769x769_80k_cityscapes_20201226_080942-bf98d186.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18b-d8_769x769_80k_cityscapes/pspnet_r18b-d8_769x769_80k_cityscapes-20201226_080942.log.json)                                                                                 |
| PSPNet        | R-50b-D8      | 769x769   |   80000 | 6.8      | 1.88           | V100   | 78.50 |         79.96 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50b-d8_4xb2-80k_cityscapes-769x769.py)            | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d8_769x769_80k_cityscapes/pspnet_r50b-d8_769x769_80k_cityscapes_20201225_094316-4c643cf6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d8_769x769_80k_cityscapes/pspnet_r50b-d8_769x769_80k_cityscapes-20201225_094316.log.json)                                                                                 |
| PSPNet        | R-101b-D8     | 769x769   |   80000 | 10.8     | 1.17           | V100   | 78.87 |         80.04 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101b-d8_4xb2-80k_cityscapes-769x769.py)           | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_769x769_80k_cityscapes/pspnet_r101b-d8_769x769_80k_cityscapes_20201226_171823-f0e7c293.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_769x769_80k_cityscapes/pspnet_r101b-d8_769x769_80k_cityscapes-20201226_171823.log.json)                                                                             |
| PSPNet        | R-50-D32      | 512x1024  |   80000 | 3.0      | 15.21          | V100   | 73.88 |         76.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50b-d32_4xb2-80k_cityscapes-512x1024.py)          | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d32_512x1024_80k_cityscapes/pspnet_r50-d32_512x1024_80k_cityscapes_20220316_224840-9092b254.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d32_512x1024_80k_cityscapes/pspnet_r50-d32_512x1024_80k_cityscapes_20220316_224840.log.json)                                                                             |
| PSPNet        | R-50b-D32 rsb | 512x1024  |   80000 | 3.1      | 16.08          | V100   | 74.09 |         77.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d32_rsb_4xb2-adamw-80k_cityscapes-512x1024.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d32_rsb-pretrain_512x1024_adamw_80k_cityscapes/pspnet_r50-d32_rsb-pretrain_512x1024_adamw_80k_cityscapes_20220316_141229-dd9c9610.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d32_rsb-pretrain_512x1024_adamw_80k_cityscapes/pspnet_r50-d32_rsb-pretrain_512x1024_adamw_80k_cityscapes_20220316_141229.log.json) |
| PSPNet        | R-50b-D32     | 512x1024  |   80000 | 2.9      | 15.41          | V100   | 72.61 |         75.51 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50b-d32_4xb2-80k_cityscapes-512x1024.py)          | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d32_512x1024_80k_cityscapes/pspnet_r50b-d32_512x1024_80k_cityscapes_20220311_152152-23bcaf8c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50b-d32_512x1024_80k_cityscapes/pspnet_r50b-d32_512x1024_80k_cityscapes_20220311_152152.log.json)                                                                         |

### ADE20K

| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                                     | download                                                                                                                                                                                                                                                                                                                                 |
| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| PSPNet | R-50-D8  | 512x512   |   80000 | 8.5      | 23.53          | V100   | 41.13 |         41.94 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb4-80k_ade20k-512x512.py)   | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_80k_ade20k/pspnet_r50-d8_512x512_80k_ade20k_20200615_014128-15a8b914.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_80k_ade20k/pspnet_r50-d8_512x512_80k_ade20k_20200615_014128.log.json)         |
| PSPNet | R-101-D8 | 512x512   |   80000 | 12       | 15.30          | V100   | 43.57 |         44.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb4-80k_ade20k-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_80k_ade20k/pspnet_r101-d8_512x512_80k_ade20k_20200614_031423-b6e782f0.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_80k_ade20k/pspnet_r101-d8_512x512_80k_ade20k_20200614_031423.log.json)     |
| PSPNet | R-50-D8  | 512x512   |  160000 | -        | -              | V100   | 42.48 |         43.44 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb4-160k_ade20k-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_160k_ade20k/pspnet_r50-d8_512x512_160k_ade20k_20200615_184358-1890b0bd.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_160k_ade20k/pspnet_r50-d8_512x512_160k_ade20k_20200615_184358.log.json)     |
| PSPNet | R-101-D8 | 512x512   |  160000 | -        | -              | V100   | 44.39 |         45.35 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb4-160k_ade20k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_160k_ade20k/pspnet_r101-d8_512x512_160k_ade20k_20200615_100650-967c316f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_160k_ade20k/pspnet_r101-d8_512x512_160k_ade20k_20200615_100650.log.json) |

### Pascal VOC 2012 + Aug

| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                                      | download                                                                                                                                                                                                                                                                                                                                     |
| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| PSPNet | R-50-D8  | 512x512   |   20000 | 6.1      | 23.59          | V100   | 76.78 |         77.61 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb4-20k_voc12aug-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_20k_voc12aug/pspnet_r50-d8_512x512_20k_voc12aug_20200617_101958-ed5dfbd9.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_20k_voc12aug/pspnet_r50-d8_512x512_20k_voc12aug_20200617_101958.log.json)     |
| PSPNet | R-101-D8 | 512x512   |   20000 | 9.6      | 15.02          | V100   | 78.47 |         79.25 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb4-20k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_20k_voc12aug/pspnet_r101-d8_512x512_20k_voc12aug_20200617_102003-4aef3c9a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_20k_voc12aug/pspnet_r101-d8_512x512_20k_voc12aug_20200617_102003.log.json) |
| PSPNet | R-50-D8  | 512x512   |   40000 | -        | -              | V100   | 77.29 |         78.48 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb4-40k_voc12aug-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_40k_voc12aug/pspnet_r50-d8_512x512_40k_voc12aug_20200613_161222-ae9c1b8c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_40k_voc12aug/pspnet_r50-d8_512x512_40k_voc12aug_20200613_161222.log.json)     |
| PSPNet | R-101-D8 | 512x512   |   40000 | -        | -              | V100   | 78.52 |         79.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb4-40k_voc12aug-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_40k_voc12aug/pspnet_r101-d8_512x512_40k_voc12aug_20200613_161222-bc933b18.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_40k_voc12aug/pspnet_r101-d8_512x512_40k_voc12aug_20200613_161222.log.json) |

### Pascal Context

| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                                            | download                                                                                                                                                                                                                                                                                                                                                             |
| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | --------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| PSPNet | R-101-D8 | 480x480   |   40000 | 8.8      | 9.68           | V100   | 46.60 |         47.78 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb4-40k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context/pspnet_r101-d8_480x480_40k_pascal_context_20200911_211210-bf0f5d7c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context/pspnet_r101-d8_480x480_40k_pascal_context-20200911_211210.log.json) |
| PSPNet | R-101-D8 | 480x480   |   80000 | -        | -              | V100   | 46.03 |         47.15 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb4-80k_pascal-context-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context/pspnet_r101-d8_480x480_80k_pascal_context_20200911_190530-c86d6233.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context/pspnet_r101-d8_480x480_80k_pascal_context-20200911_190530.log.json) |

### Pascal Context 59

| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                                               | download                                                                                                                                                                                                                                                                                                                                                                         |
| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| PSPNet | R-101-D8 | 480x480   |   40000 | -        | -              | V100   | 52.02 |         53.54 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb4-40k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context_59/pspnet_r101-d8_480x480_40k_pascal_context_59_20210416_114524-86d44cd4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_40k_pascal_context_59/pspnet_r101-d8_480x480_40k_pascal_context_59-20210416_114524.log.json) |
| PSPNet | R-101-D8 | 480x480   |   80000 | -        | -              | V100   | 52.47 |         53.99 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb4-80k_pascal-context-59-480x480.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context_59/pspnet_r101-d8_480x480_80k_pascal_context_59_20210416_114418-fa6caaa2.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_480x480_80k_pascal_context_59/pspnet_r101-d8_480x480_80k_pascal_context_59-20210416_114418.log.json) |

### Dark Zurich and Nighttime Driving

We support evaluation results on these two datasets using models above trained on Cityscapes training set.

| Method | Backbone  | Training Dataset        | Test Dataset              | mIoU  | config                                                                                                                                                  | evaluation checkpoint                                                                                                                                                                                                                                                                                                                                        |
| ------ | --------- | ----------------------- | ------------------------- | ----- | ------------------------------------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| PSPNet | R-50-D8   | Cityscapes Training set | Dark Zurich               | 10.91 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024_dark-zurich-1920x1080.py)     | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338.log.json)         |
| PSPNet | R-50-D8   | Cityscapes Training set | Nighttime Driving         | 23.02 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024_night-driving-1920x1080.py)   | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338.log.json)         |
| PSPNet | R-50-D8   | Cityscapes Training set | Cityscapes Validation set | 77.85 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb2-40k_cityscapes-512x1024.py)                           | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338-2966598c.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x1024_40k_cityscapes/pspnet_r50-d8_512x1024_40k_cityscapes_20200605_003338.log.json)         |
| PSPNet | R-101-D8  | Cityscapes Training set | Dark Zurich               | 10.16 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb2-40k_cityscapes-512x1024_dark-zurich-1920x1080.py)    | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751-467e7cf4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751.log.json)     |
| PSPNet | R-101-D8  | Cityscapes Training set | Nighttime Driving         | 20.25 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb2-40k_cityscapes-512x1024_night-driving-1920x1080.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751-467e7cf4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751.log.json)     |
| PSPNet | R-101-D8  | Cityscapes Training set | Cityscapes Validation set | 78.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb2-40k_cityscapes-512x1024.py)                          | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751-467e7cf4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x1024_40k_cityscapes/pspnet_r101-d8_512x1024_40k_cityscapes_20200604_232751.log.json)     |
| PSPNet | R-101b-D8 | Cityscapes Training set | Dark Zurich               | 15.54 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101b-d8_4xb2-80k_cityscapes-512x1024_dark-zurich-1920x1080.py)   | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes_20201226_170012-3a4d38ab.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes-20201226_170012.log.json) |
| PSPNet | R-101b-D8 | Cityscapes Training set | Nighttime Driving         | 22.25 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101b-d8_4xb2-80k_cityscapes-512x1024_night-driving-1920x1080.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes_20201226_170012-3a4d38ab.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes-20201226_170012.log.json) |
| PSPNet | R-101b-D8 | Cityscapes Training set | Cityscapes Validation set | 79.69 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101b-d8_4xb2-80k_cityscapes-512x1024.py)                         | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes_20201226_170012-3a4d38ab.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101b-d8_512x1024_80k_cityscapes/pspnet_r101b-d8_512x1024_80k_cityscapes-20201226_170012.log.json) |

### COCO-Stuff 10k

| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                                           | download                                                                                                                                                                                                                                                                                                                                                                         |
| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| PSPNet | R-50-D8  | 512x512   |   20000 | 9.6      | 20.5           | V100   | 35.69 |         36.62 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb4-20k_coco-stuff10k-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_20k_coco-stuff10k/pspnet_r50-d8_512x512_4x4_20k_coco-stuff10k_20210820_203258-b88df27f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_20k_coco-stuff10k/pspnet_r50-d8_512x512_4x4_20k_coco-stuff10k_20210820_203258.log.json)     |
| PSPNet | R-101-D8 | 512x512   |   20000 | 13.2     | 11.1           | V100   | 37.26 |         38.52 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb4-20k_coco-stuff10k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_20k_coco-stuff10k/pspnet_r101-d8_512x512_4x4_20k_coco-stuff10k_20210820_232135-76aae482.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_20k_coco-stuff10k/pspnet_r101-d8_512x512_4x4_20k_coco-stuff10k_20210820_232135.log.json) |
| PSPNet | R-50-D8  | 512x512   |   40000 | -        | -              | V100   | 36.33 |         37.24 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb4-40k_coco-stuff10k-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_40k_coco-stuff10k/pspnet_r50-d8_512x512_4x4_40k_coco-stuff10k_20210821_030857-92e2902b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_40k_coco-stuff10k/pspnet_r50-d8_512x512_4x4_40k_coco-stuff10k_20210821_030857.log.json)     |
| PSPNet | R-101-D8 | 512x512   |   40000 | -        | -              | V100   | 37.76 |         38.86 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb4-40k_coco-stuff10k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_40k_coco-stuff10k/pspnet_r101-d8_512x512_4x4_40k_coco-stuff10k_20210821_014022-831aec95.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_40k_coco-stuff10k/pspnet_r101-d8_512x512_4x4_40k_coco-stuff10k_20210821_014022.log.json) |

### COCO-Stuff 164k

| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                                             | download                                                                                                                                                                                                                                                                                                                                                                                 |
| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| PSPNet | R-50-D8  | 512x512   |   80000 | 9.6      | 20.5           | V100   | 38.80 |         39.19 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb4-80k_coco-stuff164k-512x512.py)   | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_80k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_80k_coco-stuff164k_20210707_152034-0e41b2db.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_80k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_80k_coco-stuff164k_20210707_152034.log.json)         |
| PSPNet | R-101-D8 | 512x512   |   80000 | 13.2     | 11.1           | V100   | 40.34 |         40.79 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb4-80k_coco-stuff164k-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_80k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_80k_coco-stuff164k_20210707_152034-7eb41789.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_80k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_80k_coco-stuff164k_20210707_152034.log.json)     |
| PSPNet | R-50-D8  | 512x512   |  160000 | -        | -              | V100   | 39.64 |         39.97 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb4-160k_coco-stuff164k-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_160k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_160k_coco-stuff164k_20210707_152004-51276a57.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_160k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_160k_coco-stuff164k_20210707_152004.log.json)     |
| PSPNet | R-101-D8 | 512x512   |  160000 | -        | -              | V100   | 41.28 |         41.66 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb4-160k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k_20210707_152004-4af9621b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_160k_coco-stuff164k_20210707_152004.log.json) |
| PSPNet | R-50-D8  | 512x512   |  320000 | -        | -              | V100   | 40.53 |         40.75 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb4-320k_coco-stuff164k-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004-be9610cc.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r50-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004.log.json)     |
| PSPNet | R-101-D8 | 512x512   |  320000 | -        | -              | V100   | 41.95 |         42.42 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb4-320k_coco-stuff164k-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004-72220c60.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k/pspnet_r101-d8_512x512_4x4_320k_coco-stuff164k_20210707_152004.log.json) |

### LoveDA

| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                                    | download                                                                                                                                                                                                                                                                                                                             |
| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ------------------------------------------------------------------------------------------------------------------------- | ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ |
| PSPNet | R-18-D8  | 512x512   |   80000 | 1.45     | 26.87          | V100   | 48.62 |         47.57 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r18-d8_4xb4-80k_loveda-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_512x512_80k_loveda/pspnet_r18-d8_512x512_80k_loveda_20211105_052100-b97697f1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_512x512_80k_loveda/pspnet_r18-d8_512x512_80k_loveda_20211105_052100.log.json)     |
| PSPNet | R-50-D8  | 512x512   |   80000 | 6.14     | 6.60           | V100   | 50.46 |         50.19 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb4-80k_loveda-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_80k_loveda/pspnet_r50-d8_512x512_80k_loveda_20211104_155728-88610f9f.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_512x512_80k_loveda/pspnet_r50-d8_512x512_80k_loveda_20211104_155728.log.json)     |
| PSPNet | R-101-D8 | 512x512   |   80000 | 9.61     | 4.58           | V100   | 51.86 |         51.34 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb4-80k_loveda-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_80k_loveda/pspnet_r101-d8_512x512_80k_loveda_20211104_153212-1c06c6a8.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_512x512_80k_loveda/pspnet_r101-d8_512x512_80k_loveda_20211104_153212.log.json) |

### Potsdam

| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                                     | download                                                                                                                                                                                                                                                                                                                                                 |
| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | -------------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| PSPNet | R-18-D8  | 512x512   |   80000 | 1.50     | 85.12          | V100   | 77.09 |         78.30 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r18-d8_4xb4-80k_potsdam-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_512x512_80k_potsdam/pspnet_r18-d8_4x4_512x512_80k_potsdam_20211220_125612-7cd046e1.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_512x512_80k_potsdam/pspnet_r18-d8_4x4_512x512_80k_potsdam_20211220_125612.log.json)     |
| PSPNet | R-50-D8  | 512x512   |   80000 | 6.14     | 30.21          | V100   | 78.12 |         78.98 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb4-80k_potsdam-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_512x512_80k_potsdam/pspnet_r50-d8_4x4_512x512_80k_potsdam_20211219_043541-2dd5fe67.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_512x512_80k_potsdam/pspnet_r50-d8_4x4_512x512_80k_potsdam_20211219_043541.log.json)     |
| PSPNet | R-101-D8 | 512x512   |   80000 | 9.61     | 19.40          | V100   | 78.62 |         79.47 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb4-80k_potsdam-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_4x4_512x512_80k_potsdam/pspnet_r101-d8_4x4_512x512_80k_potsdam_20211220_125612-aed036c4.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_4x4_512x512_80k_potsdam/pspnet_r101-d8_4x4_512x512_80k_potsdam_20211220_125612.log.json) |

### Vaihingen

| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                                       | download                                                                                                                                                                                                                                                                                                                                                         |
| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ---------------------------------------------------------------------------------------------------------------------------- | ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| PSPNet | R-18-D8  | 512x512   |   80000 | 1.45     | 85.06          | V100   | 71.46 |         73.36 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r18-d8_4xb4-80k_vaihingen-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_512x512_80k_vaihingen/pspnet_r18-d8_4x4_512x512_80k_vaihingen_20211228_160355-52a8a6f6.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_512x512_80k_vaihingen/pspnet_r18-d8_4x4_512x512_80k_vaihingen_20211228_160355.log.json)     |
| PSPNet | R-50-D8  | 512x512   |   80000 | 6.14     | 30.29          | V100   | 72.36 |         73.75 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb4-80k_vaihingen-512x512.py)  | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_512x512_80k_vaihingen/pspnet_r50-d8_4x4_512x512_80k_vaihingen_20211228_160355-382f8f5b.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_512x512_80k_vaihingen/pspnet_r50-d8_4x4_512x512_80k_vaihingen_20211228_160355.log.json)     |
| PSPNet | R-101-D8 | 512x512   |   80000 | 9.61     | 19.97          | V100   | 72.61 |         74.18 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r101-d8_4xb4-80k_vaihingen-512x512.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_4x4_512x512_80k_vaihingen/pspnet_r101-d8_4x4_512x512_80k_vaihingen_20211231_230806-8eba0a09.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r101-d8_4x4_512x512_80k_vaihingen/pspnet_r101-d8_4x4_512x512_80k_vaihingen_20211231_230806.log.json) |

### iSAID

| Method | Backbone | Crop Size | Lr schd | Mem (GB) | Inf time (fps) | Device |  mIoU | mIoU(ms+flip) | config                                                                                                                  | download                                                                                                                                                                                                                                                                                                                                     |
| ------ | -------- | --------- | ------: | -------- | -------------- | ------ | ----: | ------------: | ----------------------------------------------------------------------------------------------------------------------- | -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| PSPNet | R-18-D8  | 896x896   |   80000 | 4.52     | 26.91          | V100   | 60.22 |         61.25 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r18-d8_4xb4-80k_isaid-896x896.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_896x896_80k_isaid/pspnet_r18-d8_4x4_896x896_80k_isaid_20220110_180526-e84c0b6a.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r18-d8_4x4_896x896_80k_isaid/pspnet_r18-d8_4x4_896x896_80k_isaid_20220110_180526.log.json) |
| PSPNet | R-50-D8  | 896x896   |   80000 | 16.58    | 8.88           | V100   | 65.36 |         66.48 | [config](https://github.com/open-mmlab/mmsegmentation/blob/main/configs/pspnet/pspnet_r50-d8_4xb4-80k_isaid-896x896.py) | [model](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_896x896_80k_isaid/pspnet_r50-d8_4x4_896x896_80k_isaid_20220110_180629-1f21dc32.pth) \| [log](https://download.openmmlab.com/mmsegmentation/v0.5/pspnet/pspnet_r50-d8_4x4_896x896_80k_isaid/pspnet_r50-d8_4x4_896x896_80k_isaid_20220110_180629.log.json) |

Note:

- `FP16` means Mixed Precision (FP16) is adopted in training.
- `896x896` is the Crop Size of iSAID dataset, which is followed by the implementation of [PointFlow: Flowing Semantics Through Points for Aerial Image Segmentation](https://arxiv.org/pdf/2103.06564.pdf)
- `rsb` is short for 'Resnet strikes back'.
- The `b` in `R-50b` means ResNetV1b, which is a standard ResNet backbone. In MMSegmentation, default backbone is ResNetV1c, which usually performs better in semantic segmentation task.

## Citation

```bibtex
@inproceedings{zhao2017pspnet,
  title={Pyramid Scene Parsing Network},
  author={Zhao, Hengshuang and Shi, Jianping and Qi, Xiaojuan and Wang, Xiaogang and Jia, Jiaya},
  booktitle={CVPR},
  year={2017}
}
```

```bibtex
@article{wightman2021resnet,
  title={Resnet strikes back: An improved training procedure in timm},
  author={Wightman, Ross and Touvron, Hugo and J{\'e}gou, Herv{\'e}},
  journal={arXiv preprint arXiv:2110.00476},
  year={2021}
}
```