Spaces:
Runtime error
Runtime error
File size: 7,338 Bytes
412c852 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 |
Models:
- Name: swin-tiny-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512
In Collection: UPerNet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 44.41
mIoU(ms+flip): 45.79
Config: configs/swin/swin-tiny-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- Swin-T
- UPerNet
Training Resources: 8x V100 GPUS
Memory (GB): 5.02
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542-e380ad3e.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_tiny_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210531_112542.log.json
Paper:
Title: 'Swin Transformer: Hierarchical Vision Transformer using Shifted Windows'
URL: https://arxiv.org/abs/2103.14030
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/swin.py#L524
Framework: PyTorch
- Name: swin-small-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512
In Collection: UPerNet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 47.72
mIoU(ms+flip): 49.24
Config: configs/swin/swin-small-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- Swin-S
- UPerNet
Training Resources: 8x V100 GPUS
Memory (GB): 6.17
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015-ee2fff1c.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_small_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192015.log.json
Paper:
Title: 'Swin Transformer: Hierarchical Vision Transformer using Shifted Windows'
URL: https://arxiv.org/abs/2103.14030
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/swin.py#L524
Framework: PyTorch
- Name: swin-base-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512
In Collection: UPerNet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 47.99
mIoU(ms+flip): 49.57
Config: configs/swin/swin-base-patch4-window7-in1k-pre_upernet_8xb2-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- Swin-B
- UPerNet
Training Resources: 8x V100 GPUS
Memory (GB): 7.61
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192340-593b0e13.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_1K_20210526_192340.log.json
Paper:
Title: 'Swin Transformer: Hierarchical Vision Transformer using Shifted Windows'
URL: https://arxiv.org/abs/2103.14030
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/swin.py#L524
Framework: PyTorch
- Name: swin-base-patch4-window7-in22k-pre_upernet_8xb2-160k_ade20k-512x512
In Collection: UPerNet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 50.13
mIoU(ms+flip): 51.9
Config: configs/swin/swin-base-patch4-window7-in22k-pre_upernet_8xb2-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- Swin-B
- UPerNet
Training Resources: 8x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K_20210526_211650-762e2178.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K/upernet_swin_base_patch4_window7_512x512_160k_ade20k_pretrain_224x224_22K_20210526_211650.log.json
Paper:
Title: 'Swin Transformer: Hierarchical Vision Transformer using Shifted Windows'
URL: https://arxiv.org/abs/2103.14030
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/swin.py#L524
Framework: PyTorch
- Name: swin-base-patch4-window12-in1k-384x384-pre_upernet_8xb2-160k_ade20k-512x512
In Collection: UPerNet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 48.35
mIoU(ms+flip): 49.65
Config: configs/swin/swin-base-patch4-window12-in1k-384x384-pre_upernet_8xb2-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- Swin-B
- UPerNet
Training Resources: 8x V100 GPUS
Memory (GB): 8.52
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K_20210531_132020-05b22ea4.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_1K_20210531_132020.log.json
Paper:
Title: 'Swin Transformer: Hierarchical Vision Transformer using Shifted Windows'
URL: https://arxiv.org/abs/2103.14030
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/swin.py#L524
Framework: PyTorch
- Name: swin-base-patch4-window12-in22k-384x384-pre_upernet_8xb2-160k_ade20k-512x512
In Collection: UPerNet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 50.76
mIoU(ms+flip): 52.4
Config: configs/swin/swin-base-patch4-window12-in22k-384x384-pre_upernet_8xb2-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- Swin-B
- UPerNet
Training Resources: 8x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459-429057bf.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/swin/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K/upernet_swin_base_patch4_window12_512x512_160k_ade20k_pretrain_384x384_22K_20210531_125459.log.json
Paper:
Title: 'Swin Transformer: Hierarchical Vision Transformer using Shifted Windows'
URL: https://arxiv.org/abs/2103.14030
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/backbones/swin.py#L524
Framework: PyTorch
|