Spaces:
Runtime error
Runtime error
File size: 14,741 Bytes
412c852 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
# Copyright (c) OpenMMLab. All rights reserved.
# ------------------------------------------------------------------------------
# Adapted from https://github.com/wl-zhao/VPD/blob/main/vpd/models.py
# Original licence: MIT License
# ------------------------------------------------------------------------------
import math
from typing import List, Optional, Union
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmengine.model import BaseModule
from mmengine.runner import CheckpointLoader, load_checkpoint
from mmseg.registry import MODELS
from mmseg.utils import ConfigType, OptConfigType
try:
from ldm.modules.diffusionmodules.util import timestep_embedding
from ldm.util import instantiate_from_config
has_ldm = True
except ImportError:
has_ldm = False
def register_attention_control(model, controller):
"""Registers a control function to manage attention within a model.
Args:
model: The model to which attention is to be registered.
controller: The control function responsible for managing attention.
"""
def ca_forward(self, place_in_unet):
"""Custom forward method for attention.
Args:
self: Reference to the current object.
place_in_unet: The location in UNet (down/mid/up).
Returns:
The modified forward method.
"""
def forward(x, context=None, mask=None):
h = self.heads
is_cross = context is not None
context = context or x # if context is None, use x
q, k, v = self.to_q(x), self.to_k(context), self.to_v(context)
q, k, v = (
tensor.view(tensor.shape[0] * h, tensor.shape[1],
tensor.shape[2] // h) for tensor in [q, k, v])
sim = torch.matmul(q, k.transpose(-2, -1)) * self.scale
if mask is not None:
mask = mask.flatten(1).unsqueeze(1).repeat(h, 1, 1)
max_neg_value = -torch.finfo(sim.dtype).max
sim.masked_fill_(~mask, max_neg_value)
attn = sim.softmax(dim=-1)
attn_mean = attn.view(h, attn.shape[0] // h,
*attn.shape[1:]).mean(0)
controller(attn_mean, is_cross, place_in_unet)
out = torch.matmul(attn, v)
out = out.view(out.shape[0] // h, out.shape[1], out.shape[2] * h)
return self.to_out(out)
return forward
def register_recr(net_, count, place_in_unet):
"""Recursive function to register the custom forward method to all
CrossAttention layers.
Args:
net_: The network layer currently being processed.
count: The current count of layers processed.
place_in_unet: The location in UNet (down/mid/up).
Returns:
The updated count of layers processed.
"""
if net_.__class__.__name__ == 'CrossAttention':
net_.forward = ca_forward(net_, place_in_unet)
return count + 1
if hasattr(net_, 'children'):
return sum(
register_recr(child, 0, place_in_unet)
for child in net_.children())
return count
cross_att_count = sum(
register_recr(net[1], 0, place) for net, place in [
(child, 'down') if 'input_blocks' in name else (
child, 'up') if 'output_blocks' in name else
(child,
'mid') if 'middle_block' in name else (None, None) # Default case
for name, child in model.diffusion_model.named_children()
] if net is not None)
controller.num_att_layers = cross_att_count
class AttentionStore:
"""A class for storing attention information in the UNet model.
Attributes:
base_size (int): Base size for storing attention information.
max_size (int): Maximum size for storing attention information.
"""
def __init__(self, base_size=64, max_size=None):
"""Initialize AttentionStore with default or custom sizes."""
self.reset()
self.base_size = base_size
self.max_size = max_size or (base_size // 2)
self.num_att_layers = -1
@staticmethod
def get_empty_store():
"""Returns an empty store for holding attention values."""
return {
key: []
for key in [
'down_cross', 'mid_cross', 'up_cross', 'down_self', 'mid_self',
'up_self'
]
}
def reset(self):
"""Resets the step and attention stores to their initial states."""
self.cur_step = 0
self.cur_att_layer = 0
self.step_store = self.get_empty_store()
self.attention_store = {}
def forward(self, attn, is_cross: bool, place_in_unet: str):
"""Processes a single forward step, storing the attention.
Args:
attn: The attention tensor.
is_cross (bool): Whether it's cross attention.
place_in_unet (str): The location in UNet (down/mid/up).
Returns:
The unmodified attention tensor.
"""
key = f"{place_in_unet}_{'cross' if is_cross else 'self'}"
if attn.shape[1] <= (self.max_size)**2:
self.step_store[key].append(attn)
return attn
def between_steps(self):
"""Processes and stores attention information between steps."""
if not self.attention_store:
self.attention_store = self.step_store
else:
for key in self.attention_store:
self.attention_store[key] = [
stored + step for stored, step in zip(
self.attention_store[key], self.step_store[key])
]
self.step_store = self.get_empty_store()
def get_average_attention(self):
"""Calculates and returns the average attention across all steps."""
return {
key: [item for item in self.step_store[key]]
for key in self.step_store
}
def __call__(self, attn, is_cross: bool, place_in_unet: str):
"""Allows the class instance to be callable."""
return self.forward(attn, is_cross, place_in_unet)
@property
def num_uncond_att_layers(self):
"""Returns the number of unconditional attention layers (default is
0)."""
return 0
def step_callback(self, x_t):
"""A placeholder for a step callback.
Returns the input unchanged.
"""
return x_t
class UNetWrapper(nn.Module):
"""A wrapper for UNet with optional attention mechanisms.
Args:
unet (nn.Module): The UNet model to wrap
use_attn (bool): Whether to use attention. Defaults to True
base_size (int): Base size for the attention store. Defaults to 512
max_attn_size (int, optional): Maximum size for the attention store.
Defaults to None
attn_selector (str): The types of attention to use.
Defaults to 'up_cross+down_cross'
"""
def __init__(self,
unet,
use_attn=True,
base_size=512,
max_attn_size=None,
attn_selector='up_cross+down_cross'):
super().__init__()
assert has_ldm, 'To use UNetWrapper, please install required ' \
'packages via `pip install -r requirements/optional.txt`.'
self.unet = unet
self.attention_store = AttentionStore(
base_size=base_size // 8, max_size=max_attn_size)
self.attn_selector = attn_selector.split('+')
self.use_attn = use_attn
self.init_sizes(base_size)
if self.use_attn:
register_attention_control(unet, self.attention_store)
def init_sizes(self, base_size):
"""Initialize sizes based on the base size."""
self.size16 = base_size // 32
self.size32 = base_size // 16
self.size64 = base_size // 8
def forward(self, x, timesteps=None, context=None, y=None, **kwargs):
"""Forward pass through the model."""
diffusion_model = self.unet.diffusion_model
if self.use_attn:
self.attention_store.reset()
hs, emb, out_list = self._unet_forward(x, timesteps, context, y,
diffusion_model)
if self.use_attn:
self._append_attn_to_output(out_list)
return out_list[::-1]
def _unet_forward(self, x, timesteps, context, y, diffusion_model):
hs = []
t_emb = timestep_embedding(
timesteps, diffusion_model.model_channels, repeat_only=False)
emb = diffusion_model.time_embed(t_emb)
h = x.type(diffusion_model.dtype)
for module in diffusion_model.input_blocks:
h = module(h, emb, context)
hs.append(h)
h = diffusion_model.middle_block(h, emb, context)
out_list = []
for i_out, module in enumerate(diffusion_model.output_blocks):
h = torch.cat([h, hs.pop()], dim=1)
h = module(h, emb, context)
if i_out in [1, 4, 7]:
out_list.append(h)
h = h.type(x.dtype)
out_list.append(h)
return hs, emb, out_list
def _append_attn_to_output(self, out_list):
avg_attn = self.attention_store.get_average_attention()
attns = {self.size16: [], self.size32: [], self.size64: []}
for k in self.attn_selector:
for up_attn in avg_attn[k]:
size = int(math.sqrt(up_attn.shape[1]))
up_attn = up_attn.transpose(-1, -2).reshape(
*up_attn.shape[:2], size, -1)
attns[size].append(up_attn)
attn16 = torch.stack(attns[self.size16]).mean(0)
attn32 = torch.stack(attns[self.size32]).mean(0)
attn64 = torch.stack(attns[self.size64]).mean(0) if len(
attns[self.size64]) > 0 else None
out_list[1] = torch.cat([out_list[1], attn16], dim=1)
out_list[2] = torch.cat([out_list[2], attn32], dim=1)
if attn64 is not None:
out_list[3] = torch.cat([out_list[3], attn64], dim=1)
class TextAdapter(nn.Module):
"""A PyTorch Module that serves as a text adapter.
This module takes text embeddings and adjusts them based on a scaling
factor gamma.
"""
def __init__(self, text_dim=768):
super().__init__()
self.fc = nn.Sequential(
nn.Linear(text_dim, text_dim), nn.GELU(),
nn.Linear(text_dim, text_dim))
def forward(self, texts, gamma):
texts_after = self.fc(texts)
texts = texts + gamma * texts_after
return texts
@MODELS.register_module()
class VPD(BaseModule):
"""VPD (Visual Perception Diffusion) model.
.. _`VPD`: https://arxiv.org/abs/2303.02153
Args:
diffusion_cfg (dict): Configuration for diffusion model.
class_embed_path (str): Path for class embeddings.
unet_cfg (dict, optional): Configuration for U-Net.
gamma (float, optional): Gamma for text adaptation. Defaults to 1e-4.
class_embed_select (bool, optional): If True, enables class embedding
selection. Defaults to False.
pad_shape (Optional[Union[int, List[int]]], optional): Padding shape.
Defaults to None.
pad_val (Union[int, List[int]], optional): Padding value.
Defaults to 0.
init_cfg (dict, optional): Configuration for network initialization.
"""
def __init__(self,
diffusion_cfg: ConfigType,
class_embed_path: str,
unet_cfg: OptConfigType = dict(),
gamma: float = 1e-4,
class_embed_select=False,
pad_shape: Optional[Union[int, List[int]]] = None,
pad_val: Union[int, List[int]] = 0,
init_cfg: OptConfigType = None):
super().__init__(init_cfg=init_cfg)
assert has_ldm, 'To use VPD model, please install required packages' \
' via `pip install -r requirements/optional.txt`.'
if pad_shape is not None:
if not isinstance(pad_shape, (list, tuple)):
pad_shape = (pad_shape, pad_shape)
self.pad_shape = pad_shape
self.pad_val = pad_val
# diffusion model
diffusion_checkpoint = diffusion_cfg.pop('checkpoint', None)
sd_model = instantiate_from_config(diffusion_cfg)
if diffusion_checkpoint is not None:
load_checkpoint(sd_model, diffusion_checkpoint, strict=False)
self.encoder_vq = sd_model.first_stage_model
self.unet = UNetWrapper(sd_model.model, **unet_cfg)
# class embeddings & text adapter
class_embeddings = CheckpointLoader.load_checkpoint(class_embed_path)
text_dim = class_embeddings.size(-1)
self.text_adapter = TextAdapter(text_dim=text_dim)
self.class_embed_select = class_embed_select
if class_embed_select:
class_embeddings = torch.cat(
(class_embeddings, class_embeddings.mean(dim=0,
keepdims=True)),
dim=0)
self.register_buffer('class_embeddings', class_embeddings)
self.gamma = nn.Parameter(torch.ones(text_dim) * gamma)
def forward(self, x):
"""Extract features from images."""
# calculate cross-attn map
if self.class_embed_select:
if isinstance(x, (tuple, list)):
x, class_ids = x[:2]
class_ids = class_ids.tolist()
else:
class_ids = [-1] * x.size(0)
class_embeddings = self.class_embeddings[class_ids]
c_crossattn = self.text_adapter(class_embeddings, self.gamma)
c_crossattn = c_crossattn.unsqueeze(1)
else:
class_embeddings = self.class_embeddings
c_crossattn = self.text_adapter(class_embeddings, self.gamma)
c_crossattn = c_crossattn.unsqueeze(0).repeat(x.size(0), 1, 1)
# pad to required input shape for pretrained diffusion model
if self.pad_shape is not None:
pad_width = max(0, self.pad_shape[1] - x.shape[-1])
pad_height = max(0, self.pad_shape[0] - x.shape[-2])
x = F.pad(x, (0, pad_width, 0, pad_height), value=self.pad_val)
# forward the denoising model
with torch.no_grad():
latents = self.encoder_vq.encode(x).mode().detach()
t = torch.ones((x.shape[0], ), device=x.device).long()
outs = self.unet(latents, t, context=c_crossattn)
return outs
|