Spaces:
Runtime error
Runtime error
File size: 6,866 Bytes
412c852 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
from mmcv.cnn import ConvModule, build_activation_layer, build_norm_layer
from mmengine.model import BaseModule
from torch import Tensor
from mmseg.models.decode_heads.decode_head import BaseDecodeHead
from mmseg.models.losses import accuracy
from mmseg.models.utils import resize
from mmseg.registry import MODELS
from mmseg.utils import OptConfigType, SampleList
class BasePIDHead(BaseModule):
"""Base class for PID head.
Args:
in_channels (int): Number of input channels.
channels (int): Number of output channels.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict): Config dict for activation layer.
Default: dict(type='ReLU', inplace=True).
init_cfg (dict or list[dict], optional): Init config dict.
Default: None.
"""
def __init__(self,
in_channels: int,
channels: int,
norm_cfg: OptConfigType = dict(type='BN'),
act_cfg: OptConfigType = dict(type='ReLU', inplace=True),
init_cfg: OptConfigType = None):
super().__init__(init_cfg)
self.conv = ConvModule(
in_channels,
channels,
kernel_size=3,
padding=1,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
order=('norm', 'act', 'conv'))
_, self.norm = build_norm_layer(norm_cfg, num_features=channels)
self.act = build_activation_layer(act_cfg)
def forward(self, x: Tensor, cls_seg: Optional[nn.Module]) -> Tensor:
"""Forward function.
Args:
x (Tensor): Input tensor.
cls_seg (nn.Module, optional): The classification head.
Returns:
Tensor: Output tensor.
"""
x = self.conv(x)
x = self.norm(x)
x = self.act(x)
if cls_seg is not None:
x = cls_seg(x)
return x
@MODELS.register_module()
class PIDHead(BaseDecodeHead):
"""Decode head for PIDNet.
Args:
in_channels (int): Number of input channels.
channels (int): Number of output channels.
num_classes (int): Number of classes.
norm_cfg (dict): Config dict for normalization layer.
Default: dict(type='BN').
act_cfg (dict): Config dict for activation layer.
Default: dict(type='ReLU', inplace=True).
"""
def __init__(self,
in_channels: int,
channels: int,
num_classes: int,
norm_cfg: OptConfigType = dict(type='BN'),
act_cfg: OptConfigType = dict(type='ReLU', inplace=True),
**kwargs):
super().__init__(
in_channels,
channels,
num_classes=num_classes,
norm_cfg=norm_cfg,
act_cfg=act_cfg,
**kwargs)
self.i_head = BasePIDHead(in_channels, channels, norm_cfg, act_cfg)
self.p_head = BasePIDHead(in_channels // 2, channels, norm_cfg,
act_cfg)
self.d_head = BasePIDHead(
in_channels // 2,
in_channels // 4,
norm_cfg,
)
self.p_cls_seg = nn.Conv2d(channels, self.out_channels, kernel_size=1)
self.d_cls_seg = nn.Conv2d(in_channels // 4, 1, kernel_size=1)
def init_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(
m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, nn.BatchNorm2d):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
def forward(
self,
inputs: Union[Tensor,
Tuple[Tensor]]) -> Union[Tensor, Tuple[Tensor]]:
"""Forward function.
Args:
inputs (Tensor | tuple[Tensor]): Input tensor or tuple of
Tensor. When training, the input is a tuple of three tensors,
(p_feat, i_feat, d_feat), and the output is a tuple of three
tensors, (p_seg_logit, i_seg_logit, d_seg_logit).
When inference, only the head of integral branch is used, and
input is a tensor of integral feature map, and the output is
the segmentation logit.
Returns:
Tensor | tuple[Tensor]: Output tensor or tuple of tensors.
"""
if self.training:
x_p, x_i, x_d = inputs
x_p = self.p_head(x_p, self.p_cls_seg)
x_i = self.i_head(x_i, self.cls_seg)
x_d = self.d_head(x_d, self.d_cls_seg)
return x_p, x_i, x_d
else:
return self.i_head(inputs, self.cls_seg)
def _stack_batch_gt(self, batch_data_samples: SampleList) -> Tuple[Tensor]:
gt_semantic_segs = [
data_sample.gt_sem_seg.data for data_sample in batch_data_samples
]
gt_edge_segs = [
data_sample.gt_edge_map.data for data_sample in batch_data_samples
]
gt_sem_segs = torch.stack(gt_semantic_segs, dim=0)
gt_edge_segs = torch.stack(gt_edge_segs, dim=0)
return gt_sem_segs, gt_edge_segs
def loss_by_feat(self, seg_logits: Tuple[Tensor],
batch_data_samples: SampleList) -> dict:
loss = dict()
p_logit, i_logit, d_logit = seg_logits
sem_label, bd_label = self._stack_batch_gt(batch_data_samples)
p_logit = resize(
input=p_logit,
size=sem_label.shape[2:],
mode='bilinear',
align_corners=self.align_corners)
i_logit = resize(
input=i_logit,
size=sem_label.shape[2:],
mode='bilinear',
align_corners=self.align_corners)
d_logit = resize(
input=d_logit,
size=bd_label.shape[2:],
mode='bilinear',
align_corners=self.align_corners)
sem_label = sem_label.squeeze(1)
bd_label = bd_label.squeeze(1)
loss['loss_sem_p'] = self.loss_decode[0](
p_logit, sem_label, ignore_index=self.ignore_index)
loss['loss_sem_i'] = self.loss_decode[1](i_logit, sem_label)
loss['loss_bd'] = self.loss_decode[2](d_logit, bd_label)
filler = torch.ones_like(sem_label) * self.ignore_index
sem_bd_label = torch.where(
torch.sigmoid(d_logit[:, 0, :, :]) > 0.8, sem_label, filler)
loss['loss_sem_bd'] = self.loss_decode[3](i_logit, sem_bd_label)
loss['acc_seg'] = accuracy(
i_logit, sem_label, ignore_index=self.ignore_index)
return loss
|