File size: 16,046 Bytes
412c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
# Copyright (c) OpenMMLab. All rights reserved.
import logging
from typing import List, Optional

import torch
import torch.nn as nn
import torch.nn.functional as F
from mmengine.logging import print_log
from mmengine.structures import PixelData
from torch import Tensor

from mmseg.registry import MODELS
from mmseg.structures import SegDataSample
from mmseg.utils import (ConfigType, OptConfigType, OptMultiConfig,
                         OptSampleList, SampleList, add_prefix)
from ..utils import resize
from .encoder_decoder import EncoderDecoder


@MODELS.register_module()
class DepthEstimator(EncoderDecoder):
    """Encoder Decoder depth estimator.

    EncoderDecoder typically consists of backbone, decode_head, auxiliary_head.
    Note that auxiliary_head is only used for deep supervision during training,
    which could be dumped during inference.

    1. The ``loss`` method is used to calculate the loss of model,
    which includes two steps: (1) Extracts features to obtain the feature maps
    (2) Call the decode head loss function to forward decode head model and
    calculate losses.

    .. code:: text

     loss(): extract_feat() -> _decode_head_forward_train() -> _auxiliary_head_forward_train (optional)
     _decode_head_forward_train(): decode_head.loss()
     _auxiliary_head_forward_train(): auxiliary_head.loss (optional)

    2. The ``predict`` method is used to predict depth estimation results,
    which includes two steps: (1) Run inference function to obtain the list of
    depth (2) Call post-processing function to obtain list of
    ``SegDataSample`` including ``pred_depth_map``.

    .. code:: text

     predict(): inference() -> postprocess_result()
     inference(): whole_inference()/slide_inference()
     whole_inference()/slide_inference(): encoder_decoder()
     encoder_decoder(): extract_feat() -> decode_head.predict()

    3. The ``_forward`` method is used to output the tensor by running the model,
    which includes two steps: (1) Extracts features to obtain the feature maps
    (2)Call the decode head forward function to forward decode head model.

    .. code:: text

     _forward(): extract_feat() -> _decode_head.forward()

    Args:

        backbone (ConfigType): The config for the backnone of depth estimator.
        decode_head (ConfigType): The config for the decode head of depth estimator.
        neck (OptConfigType): The config for the neck of depth estimator.
            Defaults to None.
        auxiliary_head (OptConfigType): The config for the auxiliary head of
            depth estimator. Defaults to None.
        train_cfg (OptConfigType): The config for training. Defaults to None.
        test_cfg (OptConfigType): The config for testing. Defaults to None.
        data_preprocessor (dict, optional): The pre-process config of
            :class:`BaseDataPreprocessor`.
        pretrained (str, optional): The path for pretrained model.
            Defaults to None.
        init_cfg (dict, optional): The weight initialized config for
            :class:`BaseModule`.
    """  # noqa: E501

    def __init__(self,
                 backbone: ConfigType,
                 decode_head: ConfigType,
                 neck: OptConfigType = None,
                 auxiliary_head: OptConfigType = None,
                 train_cfg: OptConfigType = None,
                 test_cfg: OptConfigType = None,
                 data_preprocessor: OptConfigType = None,
                 pretrained: Optional[str] = None,
                 init_cfg: OptMultiConfig = None):
        super().__init__(
            backbone=backbone,
            decode_head=decode_head,
            neck=neck,
            auxiliary_head=auxiliary_head,
            train_cfg=train_cfg,
            test_cfg=test_cfg,
            data_preprocessor=data_preprocessor,
            pretrained=pretrained,
            init_cfg=init_cfg)

    def extract_feat(self,
                     inputs: Tensor,
                     batch_img_metas: Optional[List[dict]] = None) -> Tensor:
        """Extract features from images."""

        if getattr(self.backbone, 'class_embed_select', False) and \
                isinstance(batch_img_metas, list) and \
                'category_id' in batch_img_metas[0]:
            cat_ids = [meta['category_id'] for meta in batch_img_metas]
            cat_ids = torch.tensor(cat_ids).to(inputs.device)
            inputs = (inputs, cat_ids)

        x = self.backbone(inputs)
        if self.with_neck:
            x = self.neck(x)
        return x

    def encode_decode(self, inputs: Tensor,
                      batch_img_metas: List[dict]) -> Tensor:
        """Encode images with backbone and decode into a depth map of the same
        size as input."""
        x = self.extract_feat(inputs, batch_img_metas)
        depth = self.decode_head.predict(x, batch_img_metas, self.test_cfg)

        return depth

    def _decode_head_forward_train(self, inputs: List[Tensor],
                                   data_samples: SampleList) -> dict:
        """Run forward function and calculate loss for decode head in
        training."""
        losses = dict()
        loss_decode = self.decode_head.loss(inputs, data_samples,
                                            self.train_cfg)

        losses.update(add_prefix(loss_decode, 'decode'))
        return losses

    def _auxiliary_head_forward_train(self, inputs: List[Tensor],
                                      data_samples: SampleList) -> dict:
        """Run forward function and calculate loss for auxiliary head in
        training."""
        losses = dict()
        if isinstance(self.auxiliary_head, nn.ModuleList):
            for idx, aux_head in enumerate(self.auxiliary_head):
                loss_aux = aux_head.loss(inputs, data_samples, self.train_cfg)
                losses.update(add_prefix(loss_aux, f'aux_{idx}'))
        else:
            loss_aux = self.auxiliary_head.loss(inputs, data_samples,
                                                self.train_cfg)
            losses.update(add_prefix(loss_aux, 'aux'))

        return losses

    def loss(self, inputs: Tensor, data_samples: SampleList) -> dict:
        """Calculate losses from a batch of inputs and data samples.

        Args:
            inputs (Tensor): Input images.
            data_samples (list[:obj:`SegDataSample`]): The seg data samples.
                It usually includes information such as `metainfo` and
                `gt_depth_map`.

        Returns:
            dict[str, Tensor]: a dictionary of loss components
        """
        if data_samples is not None:
            batch_img_metas = [
                data_sample.metainfo for data_sample in data_samples
            ]
        else:
            batch_img_metas = [
                dict(
                    ori_shape=inputs.shape[2:],
                    img_shape=inputs.shape[2:],
                    pad_shape=inputs.shape[2:],
                    padding_size=[0, 0, 0, 0])
            ] * inputs.shape[0]

        x = self.extract_feat(inputs, batch_img_metas)

        losses = dict()

        loss_decode = self._decode_head_forward_train(x, data_samples)
        losses.update(loss_decode)

        if self.with_auxiliary_head:
            loss_aux = self._auxiliary_head_forward_train(x, data_samples)
            losses.update(loss_aux)

        return losses

    def predict(self,
                inputs: Tensor,
                data_samples: OptSampleList = None) -> SampleList:
        """Predict results from a batch of inputs and data samples with post-
        processing.

        Args:
            inputs (Tensor): Inputs with shape (N, C, H, W).
            data_samples (List[:obj:`SegDataSample`], optional): The seg data
                samples. It usually includes information such as `metainfo`
                and `gt_depth_map`.

        Returns:
            list[:obj:`SegDataSample`]: Depth estimation results of the
            input images. Each SegDataSample usually contain:

            - ``pred_depth_max``(PixelData): Prediction of depth estimation.
        """
        if data_samples is not None:
            batch_img_metas = [
                data_sample.metainfo for data_sample in data_samples
            ]
        else:
            batch_img_metas = [
                dict(
                    ori_shape=inputs.shape[2:],
                    img_shape=inputs.shape[2:],
                    pad_shape=inputs.shape[2:],
                    padding_size=[0, 0, 0, 0])
            ] * inputs.shape[0]

        depth = self.inference(inputs, batch_img_metas)

        return self.postprocess_result(depth, data_samples)

    def _forward(self,
                 inputs: Tensor,
                 data_samples: OptSampleList = None) -> Tensor:
        """Network forward process.

        Args:
            inputs (Tensor): Inputs with shape (N, C, H, W).
            data_samples (List[:obj:`SegDataSample`]): The seg
                data samples. It usually includes information such
                as `metainfo` and `gt_depth_map`.

        Returns:
            Tensor: Forward output of model without any post-processes.
        """
        x = self.extract_feat(inputs)
        return self.decode_head.forward(x)

    def slide_flip_inference(self, inputs: Tensor,
                             batch_img_metas: List[dict]) -> Tensor:
        """Inference by sliding-window with overlap and flip.

        If h_crop > h_img or w_crop > w_img, the small patch will be used to
        decode without padding.

        Args:
            inputs (tensor): the tensor should have a shape NxCxHxW,
                which contains all images in the batch.
            batch_img_metas (List[dict]): List of image metainfo where each may
                also contain: 'img_shape', 'scale_factor', 'flip', 'img_path',
                'ori_shape', and 'pad_shape'.
                For details on the values of these keys see
                `mmseg/datasets/pipelines/formatting.py:PackSegInputs`.

        Returns:
            Tensor: The depth estimation results.
        """

        h_stride, w_stride = self.test_cfg.stride
        h_crop, w_crop = self.test_cfg.crop_size
        batch_size, _, h_img, w_img = inputs.size()
        out_channels = self.out_channels
        h_grids = max(h_img - h_crop + h_stride - 1, 0) // h_stride + 1
        w_grids = max(w_img - w_crop + w_stride - 1, 0) // w_stride + 1
        preds = inputs.new_zeros((batch_size, out_channels, h_img, w_img))
        count_mat = inputs.new_zeros((batch_size, 1, h_img, w_img))
        for h_idx in range(h_grids):
            for w_idx in range(w_grids):
                y1 = h_idx * h_stride
                x1 = w_idx * w_stride
                y2 = min(y1 + h_crop, h_img)
                x2 = min(x1 + w_crop, w_img)
                y1 = max(y2 - h_crop, 0)
                x1 = max(x2 - w_crop, 0)
                crop_img = inputs[:, :, y1:y2, x1:x2]
                # change the image shape to patch shape
                batch_img_metas[0]['img_shape'] = crop_img.shape[2:]
                # the output of encode_decode is depth tensor map
                # with shape [N, C, H, W]
                crop_depth_map = self.encode_decode(crop_img, batch_img_metas)

                # average out the original and flipped prediction
                crop_depth_map_flip = self.encode_decode(
                    crop_img.flip(dims=(3, )), batch_img_metas)
                crop_depth_map_flip = crop_depth_map_flip.flip(dims=(3, ))
                crop_depth_map = (crop_depth_map + crop_depth_map_flip) / 2.0

                preds += F.pad(crop_depth_map,
                               (int(x1), int(preds.shape[3] - x2), int(y1),
                                int(preds.shape[2] - y2)))

                count_mat[:, :, y1:y2, x1:x2] += 1
        assert (count_mat == 0).sum() == 0
        depth = preds / count_mat

        return depth

    def inference(self, inputs: Tensor, batch_img_metas: List[dict]) -> Tensor:
        """Inference with slide/whole style.

        Args:
            inputs (Tensor): The input image of shape (N, 3, H, W).
            batch_img_metas (List[dict]): List of image metainfo where each may
                also contain: 'img_shape', 'scale_factor', 'flip', 'img_path',
                'ori_shape', 'pad_shape', and 'padding_size'.
                For details on the values of these keys see
                `mmseg/datasets/pipelines/formatting.py:PackSegInputs`.

        Returns:
            Tensor: The depth estimation results.
        """
        assert self.test_cfg.get('mode', 'whole') in ['slide', 'whole',
                                                      'slide_flip'], \
            f'Only "slide", "slide_flip" or "whole" test mode are ' \
            f'supported, but got {self.test_cfg["mode"]}.'
        ori_shape = batch_img_metas[0]['ori_shape']
        if not all(_['ori_shape'] == ori_shape for _ in batch_img_metas):
            print_log(
                'Image shapes are different in the batch.',
                logger='current',
                level=logging.WARN)
        if self.test_cfg.mode == 'slide':
            depth_map = self.slide_inference(inputs, batch_img_metas)
        if self.test_cfg.mode == 'slide_flip':
            depth_map = self.slide_flip_inference(inputs, batch_img_metas)
        else:
            depth_map = self.whole_inference(inputs, batch_img_metas)

        return depth_map

    def postprocess_result(self,
                           depth: Tensor,
                           data_samples: OptSampleList = None) -> SampleList:
        """ Convert results list to `SegDataSample`.
        Args:
            depth (Tensor): The depth estimation results.
            data_samples (list[:obj:`SegDataSample`]): The seg data samples.
                It usually includes information such as `metainfo` and
                `gt_depth_map`. Default to None.
        Returns:
            list[:obj:`SegDataSample`]: Depth estomation results of the
            input images. Each SegDataSample usually contain:

            - ``pred_depth_map``(PixelData): Prediction of depth estimation.
        """
        batch_size, C, H, W = depth.shape

        if data_samples is None:
            data_samples = [SegDataSample() for _ in range(batch_size)]
            only_prediction = True
        else:
            only_prediction = False

        for i in range(batch_size):
            if not only_prediction:
                img_meta = data_samples[i].metainfo
                # remove padding area
                if 'img_padding_size' not in img_meta:
                    padding_size = img_meta.get('padding_size', [0] * 4)
                else:
                    padding_size = img_meta['img_padding_size']
                padding_left, padding_right, padding_top, padding_bottom =\
                    padding_size
                # i_depth shape is 1, C, H, W after remove padding
                i_depth = depth[i:i + 1, :, padding_top:H - padding_bottom,
                                padding_left:W - padding_right]

                flip = img_meta.get('flip', None)
                if flip:
                    flip_direction = img_meta.get('flip_direction', None)
                    assert flip_direction in ['horizontal', 'vertical']
                    if flip_direction == 'horizontal':
                        i_depth = i_depth.flip(dims=(3, ))
                    else:
                        i_depth = i_depth.flip(dims=(2, ))

                # resize as original shape
                i_depth = resize(
                    i_depth,
                    size=img_meta['ori_shape'],
                    mode='bilinear',
                    align_corners=self.align_corners,
                    warning=False).squeeze(0)
            else:
                i_depth = depth[i]

            data_samples[i].set_data(
                {'pred_depth_map': PixelData(**{'data': i_depth})})

        return data_samples