Spaces:
Runtime error
Runtime error
File size: 16,046 Bytes
412c852 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
# Copyright (c) OpenMMLab. All rights reserved.
import logging
from typing import List, Optional
import torch
import torch.nn as nn
import torch.nn.functional as F
from mmengine.logging import print_log
from mmengine.structures import PixelData
from torch import Tensor
from mmseg.registry import MODELS
from mmseg.structures import SegDataSample
from mmseg.utils import (ConfigType, OptConfigType, OptMultiConfig,
OptSampleList, SampleList, add_prefix)
from ..utils import resize
from .encoder_decoder import EncoderDecoder
@MODELS.register_module()
class DepthEstimator(EncoderDecoder):
"""Encoder Decoder depth estimator.
EncoderDecoder typically consists of backbone, decode_head, auxiliary_head.
Note that auxiliary_head is only used for deep supervision during training,
which could be dumped during inference.
1. The ``loss`` method is used to calculate the loss of model,
which includes two steps: (1) Extracts features to obtain the feature maps
(2) Call the decode head loss function to forward decode head model and
calculate losses.
.. code:: text
loss(): extract_feat() -> _decode_head_forward_train() -> _auxiliary_head_forward_train (optional)
_decode_head_forward_train(): decode_head.loss()
_auxiliary_head_forward_train(): auxiliary_head.loss (optional)
2. The ``predict`` method is used to predict depth estimation results,
which includes two steps: (1) Run inference function to obtain the list of
depth (2) Call post-processing function to obtain list of
``SegDataSample`` including ``pred_depth_map``.
.. code:: text
predict(): inference() -> postprocess_result()
inference(): whole_inference()/slide_inference()
whole_inference()/slide_inference(): encoder_decoder()
encoder_decoder(): extract_feat() -> decode_head.predict()
3. The ``_forward`` method is used to output the tensor by running the model,
which includes two steps: (1) Extracts features to obtain the feature maps
(2)Call the decode head forward function to forward decode head model.
.. code:: text
_forward(): extract_feat() -> _decode_head.forward()
Args:
backbone (ConfigType): The config for the backnone of depth estimator.
decode_head (ConfigType): The config for the decode head of depth estimator.
neck (OptConfigType): The config for the neck of depth estimator.
Defaults to None.
auxiliary_head (OptConfigType): The config for the auxiliary head of
depth estimator. Defaults to None.
train_cfg (OptConfigType): The config for training. Defaults to None.
test_cfg (OptConfigType): The config for testing. Defaults to None.
data_preprocessor (dict, optional): The pre-process config of
:class:`BaseDataPreprocessor`.
pretrained (str, optional): The path for pretrained model.
Defaults to None.
init_cfg (dict, optional): The weight initialized config for
:class:`BaseModule`.
""" # noqa: E501
def __init__(self,
backbone: ConfigType,
decode_head: ConfigType,
neck: OptConfigType = None,
auxiliary_head: OptConfigType = None,
train_cfg: OptConfigType = None,
test_cfg: OptConfigType = None,
data_preprocessor: OptConfigType = None,
pretrained: Optional[str] = None,
init_cfg: OptMultiConfig = None):
super().__init__(
backbone=backbone,
decode_head=decode_head,
neck=neck,
auxiliary_head=auxiliary_head,
train_cfg=train_cfg,
test_cfg=test_cfg,
data_preprocessor=data_preprocessor,
pretrained=pretrained,
init_cfg=init_cfg)
def extract_feat(self,
inputs: Tensor,
batch_img_metas: Optional[List[dict]] = None) -> Tensor:
"""Extract features from images."""
if getattr(self.backbone, 'class_embed_select', False) and \
isinstance(batch_img_metas, list) and \
'category_id' in batch_img_metas[0]:
cat_ids = [meta['category_id'] for meta in batch_img_metas]
cat_ids = torch.tensor(cat_ids).to(inputs.device)
inputs = (inputs, cat_ids)
x = self.backbone(inputs)
if self.with_neck:
x = self.neck(x)
return x
def encode_decode(self, inputs: Tensor,
batch_img_metas: List[dict]) -> Tensor:
"""Encode images with backbone and decode into a depth map of the same
size as input."""
x = self.extract_feat(inputs, batch_img_metas)
depth = self.decode_head.predict(x, batch_img_metas, self.test_cfg)
return depth
def _decode_head_forward_train(self, inputs: List[Tensor],
data_samples: SampleList) -> dict:
"""Run forward function and calculate loss for decode head in
training."""
losses = dict()
loss_decode = self.decode_head.loss(inputs, data_samples,
self.train_cfg)
losses.update(add_prefix(loss_decode, 'decode'))
return losses
def _auxiliary_head_forward_train(self, inputs: List[Tensor],
data_samples: SampleList) -> dict:
"""Run forward function and calculate loss for auxiliary head in
training."""
losses = dict()
if isinstance(self.auxiliary_head, nn.ModuleList):
for idx, aux_head in enumerate(self.auxiliary_head):
loss_aux = aux_head.loss(inputs, data_samples, self.train_cfg)
losses.update(add_prefix(loss_aux, f'aux_{idx}'))
else:
loss_aux = self.auxiliary_head.loss(inputs, data_samples,
self.train_cfg)
losses.update(add_prefix(loss_aux, 'aux'))
return losses
def loss(self, inputs: Tensor, data_samples: SampleList) -> dict:
"""Calculate losses from a batch of inputs and data samples.
Args:
inputs (Tensor): Input images.
data_samples (list[:obj:`SegDataSample`]): The seg data samples.
It usually includes information such as `metainfo` and
`gt_depth_map`.
Returns:
dict[str, Tensor]: a dictionary of loss components
"""
if data_samples is not None:
batch_img_metas = [
data_sample.metainfo for data_sample in data_samples
]
else:
batch_img_metas = [
dict(
ori_shape=inputs.shape[2:],
img_shape=inputs.shape[2:],
pad_shape=inputs.shape[2:],
padding_size=[0, 0, 0, 0])
] * inputs.shape[0]
x = self.extract_feat(inputs, batch_img_metas)
losses = dict()
loss_decode = self._decode_head_forward_train(x, data_samples)
losses.update(loss_decode)
if self.with_auxiliary_head:
loss_aux = self._auxiliary_head_forward_train(x, data_samples)
losses.update(loss_aux)
return losses
def predict(self,
inputs: Tensor,
data_samples: OptSampleList = None) -> SampleList:
"""Predict results from a batch of inputs and data samples with post-
processing.
Args:
inputs (Tensor): Inputs with shape (N, C, H, W).
data_samples (List[:obj:`SegDataSample`], optional): The seg data
samples. It usually includes information such as `metainfo`
and `gt_depth_map`.
Returns:
list[:obj:`SegDataSample`]: Depth estimation results of the
input images. Each SegDataSample usually contain:
- ``pred_depth_max``(PixelData): Prediction of depth estimation.
"""
if data_samples is not None:
batch_img_metas = [
data_sample.metainfo for data_sample in data_samples
]
else:
batch_img_metas = [
dict(
ori_shape=inputs.shape[2:],
img_shape=inputs.shape[2:],
pad_shape=inputs.shape[2:],
padding_size=[0, 0, 0, 0])
] * inputs.shape[0]
depth = self.inference(inputs, batch_img_metas)
return self.postprocess_result(depth, data_samples)
def _forward(self,
inputs: Tensor,
data_samples: OptSampleList = None) -> Tensor:
"""Network forward process.
Args:
inputs (Tensor): Inputs with shape (N, C, H, W).
data_samples (List[:obj:`SegDataSample`]): The seg
data samples. It usually includes information such
as `metainfo` and `gt_depth_map`.
Returns:
Tensor: Forward output of model without any post-processes.
"""
x = self.extract_feat(inputs)
return self.decode_head.forward(x)
def slide_flip_inference(self, inputs: Tensor,
batch_img_metas: List[dict]) -> Tensor:
"""Inference by sliding-window with overlap and flip.
If h_crop > h_img or w_crop > w_img, the small patch will be used to
decode without padding.
Args:
inputs (tensor): the tensor should have a shape NxCxHxW,
which contains all images in the batch.
batch_img_metas (List[dict]): List of image metainfo where each may
also contain: 'img_shape', 'scale_factor', 'flip', 'img_path',
'ori_shape', and 'pad_shape'.
For details on the values of these keys see
`mmseg/datasets/pipelines/formatting.py:PackSegInputs`.
Returns:
Tensor: The depth estimation results.
"""
h_stride, w_stride = self.test_cfg.stride
h_crop, w_crop = self.test_cfg.crop_size
batch_size, _, h_img, w_img = inputs.size()
out_channels = self.out_channels
h_grids = max(h_img - h_crop + h_stride - 1, 0) // h_stride + 1
w_grids = max(w_img - w_crop + w_stride - 1, 0) // w_stride + 1
preds = inputs.new_zeros((batch_size, out_channels, h_img, w_img))
count_mat = inputs.new_zeros((batch_size, 1, h_img, w_img))
for h_idx in range(h_grids):
for w_idx in range(w_grids):
y1 = h_idx * h_stride
x1 = w_idx * w_stride
y2 = min(y1 + h_crop, h_img)
x2 = min(x1 + w_crop, w_img)
y1 = max(y2 - h_crop, 0)
x1 = max(x2 - w_crop, 0)
crop_img = inputs[:, :, y1:y2, x1:x2]
# change the image shape to patch shape
batch_img_metas[0]['img_shape'] = crop_img.shape[2:]
# the output of encode_decode is depth tensor map
# with shape [N, C, H, W]
crop_depth_map = self.encode_decode(crop_img, batch_img_metas)
# average out the original and flipped prediction
crop_depth_map_flip = self.encode_decode(
crop_img.flip(dims=(3, )), batch_img_metas)
crop_depth_map_flip = crop_depth_map_flip.flip(dims=(3, ))
crop_depth_map = (crop_depth_map + crop_depth_map_flip) / 2.0
preds += F.pad(crop_depth_map,
(int(x1), int(preds.shape[3] - x2), int(y1),
int(preds.shape[2] - y2)))
count_mat[:, :, y1:y2, x1:x2] += 1
assert (count_mat == 0).sum() == 0
depth = preds / count_mat
return depth
def inference(self, inputs: Tensor, batch_img_metas: List[dict]) -> Tensor:
"""Inference with slide/whole style.
Args:
inputs (Tensor): The input image of shape (N, 3, H, W).
batch_img_metas (List[dict]): List of image metainfo where each may
also contain: 'img_shape', 'scale_factor', 'flip', 'img_path',
'ori_shape', 'pad_shape', and 'padding_size'.
For details on the values of these keys see
`mmseg/datasets/pipelines/formatting.py:PackSegInputs`.
Returns:
Tensor: The depth estimation results.
"""
assert self.test_cfg.get('mode', 'whole') in ['slide', 'whole',
'slide_flip'], \
f'Only "slide", "slide_flip" or "whole" test mode are ' \
f'supported, but got {self.test_cfg["mode"]}.'
ori_shape = batch_img_metas[0]['ori_shape']
if not all(_['ori_shape'] == ori_shape for _ in batch_img_metas):
print_log(
'Image shapes are different in the batch.',
logger='current',
level=logging.WARN)
if self.test_cfg.mode == 'slide':
depth_map = self.slide_inference(inputs, batch_img_metas)
if self.test_cfg.mode == 'slide_flip':
depth_map = self.slide_flip_inference(inputs, batch_img_metas)
else:
depth_map = self.whole_inference(inputs, batch_img_metas)
return depth_map
def postprocess_result(self,
depth: Tensor,
data_samples: OptSampleList = None) -> SampleList:
""" Convert results list to `SegDataSample`.
Args:
depth (Tensor): The depth estimation results.
data_samples (list[:obj:`SegDataSample`]): The seg data samples.
It usually includes information such as `metainfo` and
`gt_depth_map`. Default to None.
Returns:
list[:obj:`SegDataSample`]: Depth estomation results of the
input images. Each SegDataSample usually contain:
- ``pred_depth_map``(PixelData): Prediction of depth estimation.
"""
batch_size, C, H, W = depth.shape
if data_samples is None:
data_samples = [SegDataSample() for _ in range(batch_size)]
only_prediction = True
else:
only_prediction = False
for i in range(batch_size):
if not only_prediction:
img_meta = data_samples[i].metainfo
# remove padding area
if 'img_padding_size' not in img_meta:
padding_size = img_meta.get('padding_size', [0] * 4)
else:
padding_size = img_meta['img_padding_size']
padding_left, padding_right, padding_top, padding_bottom =\
padding_size
# i_depth shape is 1, C, H, W after remove padding
i_depth = depth[i:i + 1, :, padding_top:H - padding_bottom,
padding_left:W - padding_right]
flip = img_meta.get('flip', None)
if flip:
flip_direction = img_meta.get('flip_direction', None)
assert flip_direction in ['horizontal', 'vertical']
if flip_direction == 'horizontal':
i_depth = i_depth.flip(dims=(3, ))
else:
i_depth = i_depth.flip(dims=(2, ))
# resize as original shape
i_depth = resize(
i_depth,
size=img_meta['ori_shape'],
mode='bilinear',
align_corners=self.align_corners,
warning=False).squeeze(0)
else:
i_depth = depth[i]
data_samples[i].set_data(
{'pred_depth_map': PixelData(**{'data': i_depth})})
return data_samples
|