File size: 9,338 Bytes
412c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List

import numpy as np
import torch
import torch.nn as nn
from mmcv.cnn import build_norm_layer
from mmcv.cnn.bricks.transformer import BaseTransformerLayer
from mmengine.model import BaseModule, ModuleList
from mmengine.runner.checkpoint import CheckpointLoader, load_state_dict
from torch.nn import functional as F

from mmseg.registry import MODELS
from mmseg.utils import get_classes, get_predefined_templates, tokenizer


@MODELS.register_module()
class CLIPTextEncoder(BaseModule):
    """A text encoder with transformer architecture to encode the label text.

    Modified from https://github.com/MendelXu/SAN/blob/main/san/model/clip_utils/classifier.py # noqa:E501
    Copyright (c) 2023 MendelXu.
    Licensed under the MIT License

    Args:
        dataset_name: (str|None): The name of the dataset to which
            the data belongs.
        vocabulary: (List[str]|None): The list of class names. Default: None.
        templates: (List[str]|None): The prompt template used for labels.
            Default: None.
        total_vocab_size: (int): Number of all words used by the pre-trained
            model. Default: 49408 (CLIP).
        context_length: (int): The max length of prompt text.
            Default: 77 (CLIP).
        embed_dims: (int): Width of transformer model. Default: 512.
        num_layers: (int): Depth of transformer. Default: 12,
        num_heads: (int): Number of attention heads in transformer.
            Default: 8,
        mlp_ratio: (int) Ratio of mlp hidden dim to embedding dim in
            transformer. Default: 4,
        output_dims: (int) Dim of output text embeddings. Default: 512,
        cache_feature: (bool) Whether to save class embeddings in cache.
            Default: True,
        cat_bg: (bool) Whether to add background embedding. Default: True.
        norm_cfg (dict|None): Config for norm layer. Default: dict(type='LN')
        init_cfg (dict or list[dict], optional): Initialization config dict.
            Default: None.
    """

    def __init__(self,
                 dataset_name: str = None,
                 vocabulary: List[str] = None,
                 templates: str = 'vild',
                 total_vocab_size: int = 49408,
                 context_length: int = 77,
                 embed_dims: int = 512,
                 num_layers: int = 12,
                 num_heads: int = 8,
                 mlp_ratio: int = 4,
                 output_dims: int = 512,
                 cache_feature: bool = True,
                 cat_bg: bool = True,
                 norm_cfg: dict = dict(type='LN'),
                 init_cfg: dict = None):
        super().__init__(init_cfg)
        if isinstance(templates, List):
            self.templates = templates
        else:
            self.templates = get_predefined_templates(templates)

        assert dataset_name is not None or vocabulary is not None, \
            "text_encoder required either 'dataset_name' or 'vocabulary'"
        assert dataset_name is None or vocabulary is None, \
            "there is conflict between 'dataset_name' and 'vocabulary'"
        self.dataset_name = dataset_name
        self.vocabulary = vocabulary
        self.num_pos = context_length
        self.token_embedding = nn.Embedding(total_vocab_size, embed_dims)
        self.positional_embedding = nn.Parameter(
            torch.empty(context_length, embed_dims))
        self.text_projection = nn.Parameter(
            torch.empty(embed_dims, output_dims))
        self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
        self.transformer = ModuleList()
        self.register_buffer(
            'attn_mask', self.build_attention_mask(), persistent=False)
        for i in range(num_layers):
            self.transformer.append(
                BaseTransformerLayer(
                    attn_cfgs=dict(
                        type='MultiheadAttention',
                        embed_dims=embed_dims,
                        num_heads=num_heads,
                        batch_first=False,
                        bias=True),
                    ffn_cfgs=dict(
                        type='FFN',
                        embed_dims=embed_dims,
                        feedforward_channels=mlp_ratio * embed_dims,
                        act_cfg=dict(type='QuickGELU')),
                    operation_order=('norm', 'self_attn', 'norm', 'ffn')))
        self.ln_final = build_norm_layer(
            norm_cfg, embed_dims, postfix='_final')[1]

        self.cache_feature = cache_feature
        if self.cache_feature:
            self.cache = {}

        self._freeze()

        self.cat_bg = cat_bg
        if self.cat_bg:
            self.bg_embed = nn.Parameter(
                torch.randn(1, self.text_projection.shape[1]))

    @property
    def ln_final(self):
        return getattr(self, self.final_name)

    def build_attention_mask(self):
        """lazily create causal attention mask, with full attention between the
        tokens.

        pytorch uses additive attention mask; fill with -inf
        """
        mask = torch.empty(self.num_pos, self.num_pos)
        mask.fill_(float('-inf'))
        mask.triu_(1)  # zero out the lower diagonal
        return mask

    def _freeze(self):
        for param in self.parameters():
            param.requires_grad = False

    def init_weights(self):
        if self.cat_bg:
            nn.init.normal_(
                self.bg_embed,
                std=self.bg_embed.shape[1]**-0.5,
            )
        if isinstance(self.init_cfg, dict) and \
                self.init_cfg.get('type') == 'Pretrained_Part':
            checkpoint = CheckpointLoader.load_checkpoint(
                self.init_cfg['checkpoint'], logger=None, map_location='cpu')

            state_dict = checkpoint.copy()
            para_prefix = 'text_encoder'
            prefix_len = len(para_prefix) + 1
            for k, v in checkpoint.items():
                state_dict.pop(k)
                if para_prefix in k:
                    state_dict[k[prefix_len:]] = v

            load_state_dict(self, state_dict, strict=False, logger=None)

        else:
            super().init_weights()

    @torch.no_grad()
    def encode_text(self, text, normalize=False):
        """encode class token."""

        embed_device = self.token_embedding.weight.device
        x = self.token_embedding(
            text.to(embed_device))  # [batch_size, n_ctx, d_model]
        x = x + self.positional_embedding
        x = x.permute(1, 0, 2)  # NLD -> LND
        for block in self.transformer:
            x = block(query=x, attn_masks=self.attn_mask)
        x = x.permute(1, 0, 2)  # LND -> NLD
        x = self.ln_final(x)  # [batch_size, n_ctx, transformer.width]
        # take features from the eot embedding
        # (eot_token is the highest number in each sequence)
        x = x[torch.arange(x.shape[0]),
              text.argmax(dim=-1)] @ self.text_projection
        return F.normalize(x, dim=-1) if normalize else x

    def template_encode(self, vocabulary):
        """Prompt engineering."""
        text_embed_bucket = []
        for template in self.templates:
            text_inputs = tokenizer.tokenize(
                [template.format(noun) for noun in vocabulary])
            text_embed = self.encode_text(text_inputs, normalize=True)
            text_embed_bucket.append(text_embed)
        text_embed = torch.stack(text_embed_bucket).mean(dim=0)
        text_embed = text_embed / text_embed.norm(dim=-1, keepdim=True)
        return text_embed

    def forward(self):
        """Forward function."""
        if self.dataset_name is None:  # encoding vocabulary directly
            class_names = self.vocabulary
            if self.cache_feature:
                new_classes = [
                    word for word in class_names if word not in self.cache
                ]
                if len(new_classes) > 0:
                    class_embeds = self.template_encode(new_classes)
                    self.cache.update(dict(zip(new_classes, class_embeds)))
                class_embeds = torch.stack(
                    [self.cache[word] for word in class_names])
            else:
                class_embeds = self.template_encode(class_names)

        else:  # encoding the classes of the dataset
            class_names = get_classes(self.dataset_name)
            if class_names[0] == 'background':
                class_names = class_names[1:]
            if self.cache_feature:
                if self.dataset_name not in self.cache:
                    class_embeds = self.template_encode(class_names)
                    self.cache[self.dataset_name] = class_embeds
                else:
                    class_embeds = self.cache[self.dataset_name]
            else:
                class_embeds = self.template_encode(class_names)

        if self.cat_bg:
            class_embeds = torch.cat([class_embeds, self.bg_embed])
            class_embeds = F.normalize(class_embeds, p=2, dim=-1)
        return self.logit_scale.exp() * class_embeds


@MODELS.register_module()
class QuickGELU(nn.Module):
    # From https://github.com/openai/CLIP/blob/main/clip/model.py
    def forward(self, x: torch.Tensor):
        return x * torch.sigmoid(1.702 * x)