Spaces:
Runtime error
Runtime error
File size: 9,338 Bytes
412c852 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List
import numpy as np
import torch
import torch.nn as nn
from mmcv.cnn import build_norm_layer
from mmcv.cnn.bricks.transformer import BaseTransformerLayer
from mmengine.model import BaseModule, ModuleList
from mmengine.runner.checkpoint import CheckpointLoader, load_state_dict
from torch.nn import functional as F
from mmseg.registry import MODELS
from mmseg.utils import get_classes, get_predefined_templates, tokenizer
@MODELS.register_module()
class CLIPTextEncoder(BaseModule):
"""A text encoder with transformer architecture to encode the label text.
Modified from https://github.com/MendelXu/SAN/blob/main/san/model/clip_utils/classifier.py # noqa:E501
Copyright (c) 2023 MendelXu.
Licensed under the MIT License
Args:
dataset_name: (str|None): The name of the dataset to which
the data belongs.
vocabulary: (List[str]|None): The list of class names. Default: None.
templates: (List[str]|None): The prompt template used for labels.
Default: None.
total_vocab_size: (int): Number of all words used by the pre-trained
model. Default: 49408 (CLIP).
context_length: (int): The max length of prompt text.
Default: 77 (CLIP).
embed_dims: (int): Width of transformer model. Default: 512.
num_layers: (int): Depth of transformer. Default: 12,
num_heads: (int): Number of attention heads in transformer.
Default: 8,
mlp_ratio: (int) Ratio of mlp hidden dim to embedding dim in
transformer. Default: 4,
output_dims: (int) Dim of output text embeddings. Default: 512,
cache_feature: (bool) Whether to save class embeddings in cache.
Default: True,
cat_bg: (bool) Whether to add background embedding. Default: True.
norm_cfg (dict|None): Config for norm layer. Default: dict(type='LN')
init_cfg (dict or list[dict], optional): Initialization config dict.
Default: None.
"""
def __init__(self,
dataset_name: str = None,
vocabulary: List[str] = None,
templates: str = 'vild',
total_vocab_size: int = 49408,
context_length: int = 77,
embed_dims: int = 512,
num_layers: int = 12,
num_heads: int = 8,
mlp_ratio: int = 4,
output_dims: int = 512,
cache_feature: bool = True,
cat_bg: bool = True,
norm_cfg: dict = dict(type='LN'),
init_cfg: dict = None):
super().__init__(init_cfg)
if isinstance(templates, List):
self.templates = templates
else:
self.templates = get_predefined_templates(templates)
assert dataset_name is not None or vocabulary is not None, \
"text_encoder required either 'dataset_name' or 'vocabulary'"
assert dataset_name is None or vocabulary is None, \
"there is conflict between 'dataset_name' and 'vocabulary'"
self.dataset_name = dataset_name
self.vocabulary = vocabulary
self.num_pos = context_length
self.token_embedding = nn.Embedding(total_vocab_size, embed_dims)
self.positional_embedding = nn.Parameter(
torch.empty(context_length, embed_dims))
self.text_projection = nn.Parameter(
torch.empty(embed_dims, output_dims))
self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07))
self.transformer = ModuleList()
self.register_buffer(
'attn_mask', self.build_attention_mask(), persistent=False)
for i in range(num_layers):
self.transformer.append(
BaseTransformerLayer(
attn_cfgs=dict(
type='MultiheadAttention',
embed_dims=embed_dims,
num_heads=num_heads,
batch_first=False,
bias=True),
ffn_cfgs=dict(
type='FFN',
embed_dims=embed_dims,
feedforward_channels=mlp_ratio * embed_dims,
act_cfg=dict(type='QuickGELU')),
operation_order=('norm', 'self_attn', 'norm', 'ffn')))
self.ln_final = build_norm_layer(
norm_cfg, embed_dims, postfix='_final')[1]
self.cache_feature = cache_feature
if self.cache_feature:
self.cache = {}
self._freeze()
self.cat_bg = cat_bg
if self.cat_bg:
self.bg_embed = nn.Parameter(
torch.randn(1, self.text_projection.shape[1]))
@property
def ln_final(self):
return getattr(self, self.final_name)
def build_attention_mask(self):
"""lazily create causal attention mask, with full attention between the
tokens.
pytorch uses additive attention mask; fill with -inf
"""
mask = torch.empty(self.num_pos, self.num_pos)
mask.fill_(float('-inf'))
mask.triu_(1) # zero out the lower diagonal
return mask
def _freeze(self):
for param in self.parameters():
param.requires_grad = False
def init_weights(self):
if self.cat_bg:
nn.init.normal_(
self.bg_embed,
std=self.bg_embed.shape[1]**-0.5,
)
if isinstance(self.init_cfg, dict) and \
self.init_cfg.get('type') == 'Pretrained_Part':
checkpoint = CheckpointLoader.load_checkpoint(
self.init_cfg['checkpoint'], logger=None, map_location='cpu')
state_dict = checkpoint.copy()
para_prefix = 'text_encoder'
prefix_len = len(para_prefix) + 1
for k, v in checkpoint.items():
state_dict.pop(k)
if para_prefix in k:
state_dict[k[prefix_len:]] = v
load_state_dict(self, state_dict, strict=False, logger=None)
else:
super().init_weights()
@torch.no_grad()
def encode_text(self, text, normalize=False):
"""encode class token."""
embed_device = self.token_embedding.weight.device
x = self.token_embedding(
text.to(embed_device)) # [batch_size, n_ctx, d_model]
x = x + self.positional_embedding
x = x.permute(1, 0, 2) # NLD -> LND
for block in self.transformer:
x = block(query=x, attn_masks=self.attn_mask)
x = x.permute(1, 0, 2) # LND -> NLD
x = self.ln_final(x) # [batch_size, n_ctx, transformer.width]
# take features from the eot embedding
# (eot_token is the highest number in each sequence)
x = x[torch.arange(x.shape[0]),
text.argmax(dim=-1)] @ self.text_projection
return F.normalize(x, dim=-1) if normalize else x
def template_encode(self, vocabulary):
"""Prompt engineering."""
text_embed_bucket = []
for template in self.templates:
text_inputs = tokenizer.tokenize(
[template.format(noun) for noun in vocabulary])
text_embed = self.encode_text(text_inputs, normalize=True)
text_embed_bucket.append(text_embed)
text_embed = torch.stack(text_embed_bucket).mean(dim=0)
text_embed = text_embed / text_embed.norm(dim=-1, keepdim=True)
return text_embed
def forward(self):
"""Forward function."""
if self.dataset_name is None: # encoding vocabulary directly
class_names = self.vocabulary
if self.cache_feature:
new_classes = [
word for word in class_names if word not in self.cache
]
if len(new_classes) > 0:
class_embeds = self.template_encode(new_classes)
self.cache.update(dict(zip(new_classes, class_embeds)))
class_embeds = torch.stack(
[self.cache[word] for word in class_names])
else:
class_embeds = self.template_encode(class_names)
else: # encoding the classes of the dataset
class_names = get_classes(self.dataset_name)
if class_names[0] == 'background':
class_names = class_names[1:]
if self.cache_feature:
if self.dataset_name not in self.cache:
class_embeds = self.template_encode(class_names)
self.cache[self.dataset_name] = class_embeds
else:
class_embeds = self.cache[self.dataset_name]
else:
class_embeds = self.template_encode(class_names)
if self.cat_bg:
class_embeds = torch.cat([class_embeds, self.bg_embed])
class_embeds = F.normalize(class_embeds, p=2, dim=-1)
return self.logit_scale.exp() * class_embeds
@MODELS.register_module()
class QuickGELU(nn.Module):
# From https://github.com/openai/CLIP/blob/main/clip/model.py
def forward(self, x: torch.Tensor):
return x * torch.sigmoid(1.702 * x)
|