File size: 4,593 Bytes
412c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional

import torch.nn as nn
from mmcv.cnn import ConvModule
from mmengine.model import BaseModule
from torch import Tensor

from mmseg.registry import MODELS
from mmseg.utils import OptConfigType


class BasicBlock(BaseModule):
    """Basic block from `ResNet <https://arxiv.org/abs/1512.03385>`_.

    Args:
        in_channels (int): Input channels.
        channels (int): Output channels.
        stride (int): Stride of the first block. Default: 1.
        downsample (nn.Module, optional): Downsample operation on identity.
            Default: None.
        norm_cfg (dict, optional): Config dict for normalization layer.
            Default: dict(type='BN').
        act_cfg (dict, optional): Config dict for activation layer in
            ConvModule. Default: dict(type='ReLU', inplace=True).
        act_cfg_out (dict, optional): Config dict for activation layer at the
            last of the block. Default: None.
        init_cfg (dict, optional): Initialization config dict. Default: None.
    """

    expansion = 1

    def __init__(self,
                 in_channels: int,
                 channels: int,
                 stride: int = 1,
                 downsample: nn.Module = None,
                 norm_cfg: OptConfigType = dict(type='BN'),
                 act_cfg: OptConfigType = dict(type='ReLU', inplace=True),
                 act_cfg_out: OptConfigType = dict(type='ReLU', inplace=True),
                 init_cfg: OptConfigType = None):
        super().__init__(init_cfg)
        self.conv1 = ConvModule(
            in_channels,
            channels,
            kernel_size=3,
            stride=stride,
            padding=1,
            norm_cfg=norm_cfg,
            act_cfg=act_cfg)
        self.conv2 = ConvModule(
            channels,
            channels,
            kernel_size=3,
            padding=1,
            norm_cfg=norm_cfg,
            act_cfg=None)
        self.downsample = downsample
        if act_cfg_out:
            self.act = MODELS.build(act_cfg_out)

    def forward(self, x: Tensor) -> Tensor:
        residual = x
        out = self.conv1(x)
        out = self.conv2(out)

        if self.downsample:
            residual = self.downsample(x)

        out += residual

        if hasattr(self, 'act'):
            out = self.act(out)

        return out


class Bottleneck(BaseModule):
    """Bottleneck block from `ResNet <https://arxiv.org/abs/1512.03385>`_.

    Args:
        in_channels (int): Input channels.
        channels (int): Output channels.
        stride (int): Stride of the first block. Default: 1.
        downsample (nn.Module, optional): Downsample operation on identity.
            Default: None.
        norm_cfg (dict, optional): Config dict for normalization layer.
            Default: dict(type='BN').
        act_cfg (dict, optional): Config dict for activation layer in
            ConvModule. Default: dict(type='ReLU', inplace=True).
        act_cfg_out (dict, optional): Config dict for activation layer at
            the last of the block. Default: None.
        init_cfg (dict, optional): Initialization config dict. Default: None.
    """

    expansion = 2

    def __init__(self,
                 in_channels: int,
                 channels: int,
                 stride: int = 1,
                 downsample: Optional[nn.Module] = None,
                 norm_cfg: OptConfigType = dict(type='BN'),
                 act_cfg: OptConfigType = dict(type='ReLU', inplace=True),
                 act_cfg_out: OptConfigType = None,
                 init_cfg: OptConfigType = None):
        super().__init__(init_cfg)
        self.conv1 = ConvModule(
            in_channels, channels, 1, norm_cfg=norm_cfg, act_cfg=act_cfg)
        self.conv2 = ConvModule(
            channels,
            channels,
            3,
            stride,
            1,
            norm_cfg=norm_cfg,
            act_cfg=act_cfg)
        self.conv3 = ConvModule(
            channels,
            channels * self.expansion,
            1,
            norm_cfg=norm_cfg,
            act_cfg=None)
        if act_cfg_out:
            self.act = MODELS.build(act_cfg_out)
        self.downsample = downsample

    def forward(self, x: Tensor) -> Tensor:
        residual = x

        out = self.conv1(x)
        out = self.conv2(out)
        out = self.conv3(out)

        if self.downsample:
            residual = self.downsample(x)

        out += residual

        if hasattr(self, 'act'):
            out = self.act(out)

        return out