File size: 4,478 Bytes
412c852
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright (c) OpenMMLab. All rights reserved.
"""Modified from https://github.com/open-
mmlab/mmdetection/blob/master/tools/analysis_tools/analyze_logs.py."""
import argparse
import json
from collections import defaultdict

import matplotlib.pyplot as plt
import seaborn as sns


def plot_curve(log_dicts, args):
    if args.backend is not None:
        plt.switch_backend(args.backend)
    sns.set_style(args.style)
    # if legend is None, use {filename}_{key} as legend
    legend = args.legend
    if legend is None:
        legend = []
        for json_log in args.json_logs:
            for metric in args.keys:
                legend.append(f'{json_log}_{metric}')
    assert len(legend) == (len(args.json_logs) * len(args.keys))
    metrics = args.keys

    num_metrics = len(metrics)
    for i, log_dict in enumerate(log_dicts):
        epochs = list(log_dict.keys())
        for j, metric in enumerate(metrics):
            print(f'plot curve of {args.json_logs[i]}, metric is {metric}')
            plot_epochs = []
            plot_iters = []
            plot_values = []
            # In some log files exist lines of validation,
            # `mode` list is used to only collect iter number
            # of training line.
            for epoch in epochs:
                epoch_logs = log_dict[epoch]
                if metric not in epoch_logs.keys():
                    continue
                if metric in ['mIoU', 'mAcc', 'aAcc']:
                    plot_epochs.append(epoch)
                    plot_values.append(epoch_logs[metric][0])
                else:
                    for idx in range(len(epoch_logs[metric])):
                        plot_iters.append(epoch_logs['step'][idx])
                        plot_values.append(epoch_logs[metric][idx])
            ax = plt.gca()
            label = legend[i * num_metrics + j]
            if metric in ['mIoU', 'mAcc', 'aAcc']:
                ax.set_xticks(plot_epochs)
                plt.xlabel('step')
                plt.plot(plot_epochs, plot_values, label=label, marker='o')
            else:
                plt.xlabel('iter')
                plt.plot(plot_iters, plot_values, label=label, linewidth=0.5)
        plt.legend()
        if args.title is not None:
            plt.title(args.title)
    if args.out is None:
        plt.show()
    else:
        print(f'save curve to: {args.out}')
        plt.savefig(args.out)
        plt.cla()


def parse_args():
    parser = argparse.ArgumentParser(description='Analyze Json Log')
    parser.add_argument(
        'json_logs',
        type=str,
        nargs='+',
        help='path of train log in json format')
    parser.add_argument(
        '--keys',
        type=str,
        nargs='+',
        default=['mIoU'],
        help='the metric that you want to plot')
    parser.add_argument('--title', type=str, help='title of figure')
    parser.add_argument(
        '--legend',
        type=str,
        nargs='+',
        default=None,
        help='legend of each plot')
    parser.add_argument(
        '--backend', type=str, default=None, help='backend of plt')
    parser.add_argument(
        '--style', type=str, default='dark', help='style of plt')
    parser.add_argument('--out', type=str, default=None)
    args = parser.parse_args()
    return args


def load_json_logs(json_logs):
    # load and convert json_logs to log_dict, key is step, value is a sub dict
    # keys of sub dict is different metrics
    # value of sub dict is a list of corresponding values of all iterations
    log_dicts = [dict() for _ in json_logs]
    prev_step = 0
    for json_log, log_dict in zip(json_logs, log_dicts):
        with open(json_log) as log_file:
            for line in log_file:
                log = json.loads(line.strip())
                # the final step in json file is 0.
                if 'step' in log and log['step'] != 0:
                    step = log['step']
                    prev_step = step
                else:
                    step = prev_step
                if step not in log_dict:
                    log_dict[step] = defaultdict(list)
                for k, v in log.items():
                    log_dict[step][k].append(v)
    return log_dicts


def main():
    args = parse_args()
    json_logs = args.json_logs
    for json_log in json_logs:
        assert json_log.endswith('.json')
    log_dicts = load_json_logs(json_logs)
    plot_curve(log_dicts, args)


if __name__ == '__main__':
    main()