Spaces:
Runtime error
Runtime error
File size: 6,860 Bytes
412c852 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 |
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.ticker import MultipleLocator
from mmengine.config import Config, DictAction
from mmengine.registry import init_default_scope
from mmengine.utils import mkdir_or_exist, progressbar
from PIL import Image
from mmseg.registry import DATASETS
init_default_scope('mmseg')
def parse_args():
parser = argparse.ArgumentParser(
description='Generate confusion matrix from segmentation results')
parser.add_argument('config', help='test config file path')
parser.add_argument(
'prediction_path', help='prediction path where test folder result')
parser.add_argument(
'save_dir', help='directory where confusion matrix will be saved')
parser.add_argument(
'--show', action='store_true', help='show confusion matrix')
parser.add_argument(
'--color-theme',
default='winter',
help='theme of the matrix color map')
parser.add_argument(
'--title',
default='Normalized Confusion Matrix',
help='title of the matrix color map')
parser.add_argument(
'--cfg-options',
nargs='+',
action=DictAction,
help='override some settings in the used config, the key-value pair '
'in xxx=yyy format will be merged into config file. If the value to '
'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
'Note that the quotation marks are necessary and that no white space '
'is allowed.')
args = parser.parse_args()
return args
def calculate_confusion_matrix(dataset, results):
"""Calculate the confusion matrix.
Args:
dataset (Dataset): Test or val dataset.
results (list[ndarray]): A list of segmentation results in each image.
"""
n = len(dataset.METAINFO['classes'])
confusion_matrix = np.zeros(shape=[n, n])
assert len(dataset) == len(results)
ignore_index = dataset.ignore_index
reduce_zero_label = dataset.reduce_zero_label
prog_bar = progressbar.ProgressBar(len(results))
for idx, per_img_res in enumerate(results):
res_segm = per_img_res
gt_segm = dataset[idx]['data_samples'] \
.gt_sem_seg.data.squeeze().numpy().astype(np.uint8)
gt_segm, res_segm = gt_segm.flatten(), res_segm.flatten()
if reduce_zero_label:
gt_segm = gt_segm - 1
to_ignore = gt_segm == ignore_index
gt_segm, res_segm = gt_segm[~to_ignore], res_segm[~to_ignore]
inds = n * gt_segm + res_segm
mat = np.bincount(inds, minlength=n**2).reshape(n, n)
confusion_matrix += mat
prog_bar.update()
return confusion_matrix
def plot_confusion_matrix(confusion_matrix,
labels,
save_dir=None,
show=True,
title='Normalized Confusion Matrix',
color_theme='OrRd'):
"""Draw confusion matrix with matplotlib.
Args:
confusion_matrix (ndarray): The confusion matrix.
labels (list[str]): List of class names.
save_dir (str|optional): If set, save the confusion matrix plot to the
given path. Default: None.
show (bool): Whether to show the plot. Default: True.
title (str): Title of the plot. Default: `Normalized Confusion Matrix`.
color_theme (str): Theme of the matrix color map. Default: `winter`.
"""
# normalize the confusion matrix
per_label_sums = confusion_matrix.sum(axis=1)[:, np.newaxis]
confusion_matrix = \
confusion_matrix.astype(np.float32) / per_label_sums * 100
num_classes = len(labels)
fig, ax = plt.subplots(
figsize=(2 * num_classes, 2 * num_classes * 0.8), dpi=300)
cmap = plt.get_cmap(color_theme)
im = ax.imshow(confusion_matrix, cmap=cmap)
colorbar = plt.colorbar(mappable=im, ax=ax)
colorbar.ax.tick_params(labelsize=20) # 设置 colorbar 标签的字体大小
title_font = {'weight': 'bold', 'size': 20}
ax.set_title(title, fontdict=title_font)
label_font = {'size': 40}
plt.ylabel('Ground Truth Label', fontdict=label_font)
plt.xlabel('Prediction Label', fontdict=label_font)
# draw locator
xmajor_locator = MultipleLocator(1)
xminor_locator = MultipleLocator(0.5)
ax.xaxis.set_major_locator(xmajor_locator)
ax.xaxis.set_minor_locator(xminor_locator)
ymajor_locator = MultipleLocator(1)
yminor_locator = MultipleLocator(0.5)
ax.yaxis.set_major_locator(ymajor_locator)
ax.yaxis.set_minor_locator(yminor_locator)
# draw grid
ax.grid(True, which='minor', linestyle='-')
# draw label
ax.set_xticks(np.arange(num_classes))
ax.set_yticks(np.arange(num_classes))
ax.set_xticklabels(labels, fontsize=20)
ax.set_yticklabels(labels, fontsize=20)
ax.tick_params(
axis='x', bottom=False, top=True, labelbottom=False, labeltop=True)
plt.setp(
ax.get_xticklabels(), rotation=45, ha='left', rotation_mode='anchor')
# draw confusion matrix value
for i in range(num_classes):
for j in range(num_classes):
ax.text(
j,
i,
'{}%'.format(
round(confusion_matrix[i, j], 2
) if not np.isnan(confusion_matrix[i, j]) else -1),
ha='center',
va='center',
color='k',
size=20)
ax.set_ylim(len(confusion_matrix) - 0.5, -0.5) # matplotlib>3.1.1
fig.tight_layout()
if save_dir is not None:
mkdir_or_exist(save_dir)
plt.savefig(
os.path.join(save_dir, 'confusion_matrix.png'), format='png')
if show:
plt.show()
def main():
args = parse_args()
cfg = Config.fromfile(args.config)
if args.cfg_options is not None:
cfg.merge_from_dict(args.cfg_options)
results = []
for img in sorted(os.listdir(args.prediction_path)):
img = os.path.join(args.prediction_path, img)
image = Image.open(img)
image = np.copy(image)
results.append(image)
assert isinstance(results, list)
if isinstance(results[0], np.ndarray):
pass
else:
raise TypeError('invalid type of prediction results')
dataset = DATASETS.build(cfg.test_dataloader.dataset)
confusion_matrix = calculate_confusion_matrix(dataset, results)
plot_confusion_matrix(
confusion_matrix,
dataset.METAINFO['classes'],
save_dir=args.save_dir,
show=args.show,
title=args.title,
color_theme=args.color_theme)
if __name__ == '__main__':
main()
|