HubHop
update
412c852
raw
history blame
2.46 kB
# dataset settings
_base_ = './mapillary_v1.py'
metainfo = dict(
classes=('Bird', 'Ground Animal', 'Curb', 'Fence', 'Guard Rail', 'Barrier',
'Wall', 'Bike Lane', 'Crosswalk - Plain', 'Curb Cut', 'Parking',
'Pedestrian Area', 'Rail Track', 'Road', 'Service Lane',
'Sidewalk', 'Bridge', 'Building', 'Tunnel', 'Person', 'Bicyclist',
'Motorcyclist', 'Other Rider', 'Lane Marking - Crosswalk',
'Lane Marking - General', 'Mountain', 'Sand', 'Sky', 'Snow',
'Terrain', 'Vegetation', 'Water', 'Banner', 'Bench', 'Bike Rack',
'Billboard', 'Catch Basin', 'CCTV Camera', 'Fire Hydrant',
'Junction Box', 'Mailbox', 'Manhole', 'Phone Booth', 'Pothole',
'Street Light', 'Pole', 'Traffic Sign Frame', 'Utility Pole',
'Traffic Light', 'Traffic Sign (Back)', 'Traffic Sign (Front)',
'Trash Can', 'Bicycle', 'Boat', 'Bus', 'Car', 'Caravan',
'Motorcycle', 'On Rails', 'Other Vehicle', 'Trailer', 'Truck',
'Wheeled Slow', 'Car Mount', 'Ego Vehicle'),
palette=[[165, 42, 42], [0, 192, 0], [196, 196, 196], [190, 153, 153],
[180, 165, 180], [90, 120, 150], [102, 102, 156], [128, 64, 255],
[140, 140, 200], [170, 170, 170], [250, 170, 160], [96, 96, 96],
[230, 150, 140], [128, 64, 128], [110, 110, 110], [244, 35, 232],
[150, 100, 100], [70, 70, 70], [150, 120, 90], [220, 20, 60],
[255, 0, 0], [255, 0, 100], [255, 0, 200], [200, 128, 128],
[255, 255, 255], [64, 170, 64], [230, 160, 50], [70, 130, 180],
[190, 255, 255], [152, 251, 152], [107, 142, 35], [0, 170, 30],
[255, 255, 128], [250, 0, 30], [100, 140, 180], [220, 220, 220],
[220, 128, 128], [222, 40, 40], [100, 170, 30], [40, 40, 40],
[33, 33, 33], [100, 128, 160], [142, 0, 0], [70, 100, 150],
[210, 170, 100], [153, 153, 153], [128, 128, 128], [0, 0, 80],
[250, 170, 30], [192, 192, 192], [220, 220, 0], [140, 140, 20],
[119, 11, 32], [150, 0, 255], [0, 60, 100], [0, 0, 142],
[0, 0, 90], [0, 0, 230], [0, 80, 100], [128, 64, 64], [0, 0, 110],
[0, 0, 70], [0, 0, 192], [32, 32, 32], [120, 10, 10]])
train_dataloader = dict(dataset=dict(metainfo=metainfo))
val_dataloader = dict(dataset=dict(metainfo=metainfo))
test_dataloader = val_dataloader