Spaces:
Runtime error
Runtime error
# model settings | |
norm_cfg = dict(type='SyncBN', requires_grad=True) | |
data_preprocessor = dict( | |
type='SegDataPreProcessor', | |
mean=[123.675, 116.28, 103.53], | |
std=[58.395, 57.12, 57.375], | |
bgr_to_rgb=True, | |
pad_val=0, | |
seg_pad_val=255) | |
model = dict( | |
type='EncoderDecoder', | |
data_preprocessor=data_preprocessor, | |
pretrained=None, | |
backbone=dict( | |
type='UNet', | |
in_channels=3, | |
base_channels=64, | |
num_stages=5, | |
strides=(1, 1, 1, 1, 1), | |
enc_num_convs=(2, 2, 2, 2, 2), | |
dec_num_convs=(2, 2, 2, 2), | |
downsamples=(True, True, True, True), | |
enc_dilations=(1, 1, 1, 1, 1), | |
dec_dilations=(1, 1, 1, 1), | |
with_cp=False, | |
conv_cfg=None, | |
norm_cfg=norm_cfg, | |
act_cfg=dict(type='ReLU'), | |
upsample_cfg=dict(type='InterpConv'), | |
norm_eval=False), | |
decode_head=dict( | |
type='FCNHead', | |
in_channels=64, | |
in_index=4, | |
channels=64, | |
num_convs=1, | |
concat_input=False, | |
dropout_ratio=0.1, | |
num_classes=2, | |
norm_cfg=norm_cfg, | |
align_corners=False, | |
loss_decode=dict( | |
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), | |
auxiliary_head=dict( | |
type='FCNHead', | |
in_channels=128, | |
in_index=3, | |
channels=64, | |
num_convs=1, | |
concat_input=False, | |
dropout_ratio=0.1, | |
num_classes=2, | |
norm_cfg=norm_cfg, | |
align_corners=False, | |
loss_decode=dict( | |
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)), | |
# model training and testing settings | |
train_cfg=dict(), | |
test_cfg=dict(mode='slide', crop_size=256, stride=170)) | |