HubHop
update
412c852
raw
history blame
1.7 kB
norm_cfg = dict(type='SyncBN', requires_grad=True)
data_preprocessor = dict(
type='SegDataPreProcessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True,
pad_val=0,
seg_pad_val=255)
model = dict(
type='EncoderDecoder',
data_preprocessor=data_preprocessor,
pretrained=None,
backbone=dict(
type='MAE',
img_size=(640, 640),
patch_size=16,
in_channels=3,
embed_dims=768,
num_layers=12,
num_heads=12,
mlp_ratio=4,
out_indices=(3, 5, 7, 11),
attn_drop_rate=0.0,
drop_path_rate=0.1,
norm_cfg=dict(type='LN', eps=1e-6),
act_cfg=dict(type='GELU'),
norm_eval=False,
init_values=0.1),
neck=dict(type='Feature2Pyramid', embed_dim=768, rescales=[4, 2, 1, 0.5]),
decode_head=dict(
type='UPerHead',
in_channels=[384, 384, 384, 384],
in_index=[0, 1, 2, 3],
pool_scales=(1, 2, 3, 6),
channels=512,
dropout_ratio=0.1,
num_classes=19,
norm_cfg=norm_cfg,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)),
auxiliary_head=dict(
type='FCNHead',
in_channels=384,
in_index=2,
channels=256,
num_convs=1,
concat_input=False,
dropout_ratio=0.1,
num_classes=19,
norm_cfg=norm_cfg,
align_corners=False,
loss_decode=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=0.4)),
# model training and testing settings
train_cfg=dict(),
test_cfg=dict(mode='whole'))