Spaces:
Runtime error
Runtime error
# model settings | |
data_preprocessor = dict( | |
type='SegDataPreProcessor', | |
mean=[127.5, 127.5, 127.5], | |
std=[127.5, 127.5, 127.5], | |
bgr_to_rgb=True, | |
pad_val=0, | |
seg_pad_val=0) | |
# adapted from stable-diffusion/configs/stable-diffusion/v1-inference.yaml | |
stable_diffusion_cfg = dict( | |
base_learning_rate=0.0001, | |
target='ldm.models.diffusion.ddpm.LatentDiffusion', | |
checkpoint='https://download.openmmlab.com/mmsegmentation/v0.5/' | |
'vpd/stable_diffusion_v1-5_pretrain_third_party.pth', | |
params=dict( | |
linear_start=0.00085, | |
linear_end=0.012, | |
num_timesteps_cond=1, | |
log_every_t=200, | |
timesteps=1000, | |
first_stage_key='jpg', | |
cond_stage_key='txt', | |
image_size=64, | |
channels=4, | |
cond_stage_trainable=False, | |
conditioning_key='crossattn', | |
monitor='val/loss_simple_ema', | |
scale_factor=0.18215, | |
use_ema=False, | |
scheduler_config=dict( | |
target='ldm.lr_scheduler.LambdaLinearScheduler', | |
params=dict( | |
warm_up_steps=[10000], | |
cycle_lengths=[10000000000000], | |
f_start=[1e-06], | |
f_max=[1.0], | |
f_min=[1.0])), | |
unet_config=dict( | |
target='ldm.modules.diffusionmodules.openaimodel.UNetModel', | |
params=dict( | |
image_size=32, | |
in_channels=4, | |
out_channels=4, | |
model_channels=320, | |
attention_resolutions=[4, 2, 1], | |
num_res_blocks=2, | |
channel_mult=[1, 2, 4, 4], | |
num_heads=8, | |
use_spatial_transformer=True, | |
transformer_depth=1, | |
context_dim=768, | |
use_checkpoint=True, | |
legacy=False)), | |
first_stage_config=dict( | |
target='ldm.models.autoencoder.AutoencoderKL', | |
params=dict( | |
embed_dim=4, | |
monitor='val/rec_loss', | |
ddconfig=dict( | |
double_z=True, | |
z_channels=4, | |
resolution=256, | |
in_channels=3, | |
out_ch=3, | |
ch=128, | |
ch_mult=[1, 2, 4, 4], | |
num_res_blocks=2, | |
attn_resolutions=[], | |
dropout=0.0), | |
lossconfig=dict(target='torch.nn.Identity'))), | |
cond_stage_config=dict( | |
target='ldm.modules.encoders.modules.AbstractEncoder'))) | |
model = dict( | |
type='DepthEstimator', | |
data_preprocessor=data_preprocessor, | |
backbone=dict( | |
type='VPD', | |
diffusion_cfg=stable_diffusion_cfg, | |
), | |
) | |
# some of the parameters in stable-diffusion model will not be updated | |
# during training | |
find_unused_parameters = True | |