Spaces:
Runtime error
Runtime error
_base_ = [ | |
'../_base_/models/upernet_beit.py', '../_base_/datasets/ade20k_640x640.py', | |
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' | |
] | |
crop_size = (640, 640) | |
data_preprocessor = dict(size=crop_size) | |
model = dict( | |
data_preprocessor=data_preprocessor, | |
pretrained='pretrain/beit_base_patch16_224_pt22k_ft22k.pth', | |
test_cfg=dict(mode='slide', crop_size=(640, 640), stride=(426, 426))) | |
optim_wrapper = dict( | |
_delete_=True, | |
type='OptimWrapper', | |
optimizer=dict( | |
type='AdamW', lr=3e-5, betas=(0.9, 0.999), weight_decay=0.05), | |
constructor='LayerDecayOptimizerConstructor', | |
paramwise_cfg=dict(num_layers=12, layer_decay_rate=0.9)) | |
param_scheduler = [ | |
dict( | |
type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=1500), | |
dict( | |
type='PolyLR', | |
power=1.0, | |
begin=1500, | |
end=160000, | |
eta_min=0.0, | |
by_epoch=False, | |
) | |
] | |
# By default, models are trained on 8 GPUs with 2 images per GPU | |
train_dataloader = dict(batch_size=2) | |
val_dataloader = dict(batch_size=1) | |
test_dataloader = val_dataloader | |