Spaces:
Runtime error
Runtime error
snnetv2-semantic-segmentation
/
configs
/bisenetv2
/bisenetv2_fcn_4xb4-ohem-160k_cityscapes-1024x1024.py
_base_ = [ | |
'../_base_/models/bisenetv2.py', | |
'../_base_/datasets/cityscapes_1024x1024.py', | |
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' | |
] | |
crop_size = (1024, 1024) | |
data_preprocessor = dict(size=crop_size) | |
norm_cfg = dict(type='SyncBN', requires_grad=True) | |
models = dict( | |
data_preprocessor=data_preprocessor, | |
decode_head=dict( | |
sampler=dict(type='OHEMPixelSampler', thresh=0.7, min_kept=10000)), | |
auxiliary_head=[ | |
dict( | |
type='FCNHead', | |
in_channels=16, | |
channels=16, | |
num_convs=2, | |
num_classes=19, | |
in_index=1, | |
norm_cfg=norm_cfg, | |
concat_input=False, | |
align_corners=False, | |
sampler=dict(type='OHEMPixelSampler', thresh=0.7, min_kept=10000), | |
loss_decode=dict( | |
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), | |
dict( | |
type='FCNHead', | |
in_channels=32, | |
channels=64, | |
num_convs=2, | |
num_classes=19, | |
in_index=2, | |
norm_cfg=norm_cfg, | |
concat_input=False, | |
align_corners=False, | |
sampler=dict(type='OHEMPixelSampler', thresh=0.7, min_kept=10000), | |
loss_decode=dict( | |
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), | |
dict( | |
type='FCNHead', | |
in_channels=64, | |
channels=256, | |
num_convs=2, | |
num_classes=19, | |
in_index=3, | |
norm_cfg=norm_cfg, | |
concat_input=False, | |
align_corners=False, | |
sampler=dict(type='OHEMPixelSampler', thresh=0.7, min_kept=10000), | |
loss_decode=dict( | |
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), | |
dict( | |
type='FCNHead', | |
in_channels=128, | |
channels=1024, | |
num_convs=2, | |
num_classes=19, | |
in_index=4, | |
norm_cfg=norm_cfg, | |
concat_input=False, | |
align_corners=False, | |
sampler=dict(type='OHEMPixelSampler', thresh=0.7, min_kept=10000), | |
loss_decode=dict( | |
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0)), | |
], | |
) | |
param_scheduler = [ | |
dict(type='LinearLR', by_epoch=False, start_factor=0.1, begin=0, end=1000), | |
dict( | |
type='PolyLR', | |
eta_min=1e-4, | |
power=0.9, | |
begin=1000, | |
end=160000, | |
by_epoch=False, | |
) | |
] | |
optimizer = dict(type='SGD', lr=0.05, momentum=0.9, weight_decay=0.0005) | |
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer) | |
train_dataloader = dict(batch_size=4, num_workers=4) | |
val_dataloader = dict(batch_size=1, num_workers=4) | |
test_dataloader = val_dataloader | |