Spaces:
Runtime error
Runtime error
snnetv2-semantic-segmentation
/
configs
/convnext
/convnext-tiny_upernet_8xb2-amp-160k_ade20k-512x512.py
_base_ = [ | |
'../_base_/models/upernet_convnext.py', '../_base_/datasets/ade20k.py', | |
'../_base_/default_runtime.py', '../_base_/schedules/schedule_160k.py' | |
] | |
crop_size = (512, 512) | |
data_preprocessor = dict(size=crop_size) | |
checkpoint_file = 'https://download.openmmlab.com/mmclassification/v0/convnext/downstream/convnext-tiny_3rdparty_32xb128-noema_in1k_20220301-795e9634.pth' # noqa | |
model = dict( | |
data_preprocessor=data_preprocessor, | |
backbone=dict( | |
type='mmpretrain.ConvNeXt', | |
arch='tiny', | |
out_indices=[0, 1, 2, 3], | |
drop_path_rate=0.4, | |
layer_scale_init_value=1.0, | |
gap_before_final_norm=False, | |
init_cfg=dict( | |
type='Pretrained', checkpoint=checkpoint_file, | |
prefix='backbone.')), | |
decode_head=dict( | |
in_channels=[96, 192, 384, 768], | |
num_classes=150, | |
), | |
auxiliary_head=dict(in_channels=384, num_classes=150), | |
test_cfg=dict(mode='slide', crop_size=crop_size, stride=(341, 341)), | |
) | |
optim_wrapper = dict( | |
_delete_=True, | |
type='AmpOptimWrapper', | |
optimizer=dict( | |
type='AdamW', lr=0.0001, betas=(0.9, 0.999), weight_decay=0.05), | |
paramwise_cfg={ | |
'decay_rate': 0.9, | |
'decay_type': 'stage_wise', | |
'num_layers': 6 | |
}, | |
constructor='LearningRateDecayOptimizerConstructor', | |
loss_scale='dynamic') | |
param_scheduler = [ | |
dict( | |
type='LinearLR', start_factor=1e-6, by_epoch=False, begin=0, end=1500), | |
dict( | |
type='PolyLR', | |
power=1.0, | |
begin=1500, | |
end=160000, | |
eta_min=0.0, | |
by_epoch=False, | |
) | |
] | |
# By default, models are trained on 8 GPUs with 2 images per GPU | |
train_dataloader = dict(batch_size=2) | |
val_dataloader = dict(batch_size=1) | |
test_dataloader = val_dataloader | |