HubHop
update
412c852
raw
history blame
13.5 kB
Collections:
- Name: DMNet
License: Apache License 2.0
Metadata:
Training Data:
- Cityscapes
- ADE20K
Paper:
Title: Dynamic Multi-scale Filters for Semantic Segmentation
URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf
README: configs/dmnet/README.md
Frameworks:
- PyTorch
Models:
- Name: dmnet_r50-d8_4xb2-40k_cityscapes-512x1024
In Collection: DMNet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.78
mIoU(ms+flip): 79.14
Config: configs/dmnet/dmnet_r50-d8_4xb2-40k_cityscapes-512x1024.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-50-D8
- DMNet
Training Resources: 4x V100 GPUS
Memory (GB): 7.0
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_40k_cityscapes/dmnet_r50-d8_512x1024_40k_cityscapes_20201215_042326-615373cf.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_40k_cityscapes/dmnet_r50-d8_512x1024_40k_cityscapes-20201215_042326.log.json
Paper:
Title: Dynamic Multi-scale Filters for Semantic Segmentation
URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93
Framework: PyTorch
- Name: dmnet_r101-d8_4xb2-40k_cityscapes-512x1024
In Collection: DMNet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.37
mIoU(ms+flip): 79.72
Config: configs/dmnet/dmnet_r101-d8_4xb2-40k_cityscapes-512x1024.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-101-D8
- DMNet
Training Resources: 4x V100 GPUS
Memory (GB): 10.6
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_40k_cityscapes/dmnet_r101-d8_512x1024_40k_cityscapes_20201215_043100-8291e976.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_40k_cityscapes/dmnet_r101-d8_512x1024_40k_cityscapes-20201215_043100.log.json
Paper:
Title: Dynamic Multi-scale Filters for Semantic Segmentation
URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93
Framework: PyTorch
- Name: dmnet_r50-d8_4xb2-40k_cityscapes-769x769
In Collection: DMNet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.49
mIoU(ms+flip): 80.27
Config: configs/dmnet/dmnet_r50-d8_4xb2-40k_cityscapes-769x769.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-50-D8
- DMNet
Training Resources: 4x V100 GPUS
Memory (GB): 7.9
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_40k_cityscapes/dmnet_r50-d8_769x769_40k_cityscapes_20201215_093706-e7f0e23e.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_40k_cityscapes/dmnet_r50-d8_769x769_40k_cityscapes-20201215_093706.log.json
Paper:
Title: Dynamic Multi-scale Filters for Semantic Segmentation
URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93
Framework: PyTorch
- Name: dmnet_r101-d8_4xb2-40k_cityscapes-769x769
In Collection: DMNet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.62
mIoU(ms+flip): 78.94
Config: configs/dmnet/dmnet_r101-d8_4xb2-40k_cityscapes-769x769.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-101-D8
- DMNet
Training Resources: 4x V100 GPUS
Memory (GB): 12.0
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_40k_cityscapes/dmnet_r101-d8_769x769_40k_cityscapes_20201215_081348-a74261f6.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_40k_cityscapes/dmnet_r101-d8_769x769_40k_cityscapes-20201215_081348.log.json
Paper:
Title: Dynamic Multi-scale Filters for Semantic Segmentation
URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93
Framework: PyTorch
- Name: dmnet_r50-d8_4xb2-80k_cityscapes-512x1024
In Collection: DMNet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.07
mIoU(ms+flip): 80.22
Config: configs/dmnet/dmnet_r50-d8_4xb2-80k_cityscapes-512x1024.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-50-D8
- DMNet
Training Resources: 4x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_80k_cityscapes/dmnet_r50-d8_512x1024_80k_cityscapes_20201215_053728-3c8893b9.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_80k_cityscapes/dmnet_r50-d8_512x1024_80k_cityscapes-20201215_053728.log.json
Paper:
Title: Dynamic Multi-scale Filters for Semantic Segmentation
URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93
Framework: PyTorch
- Name: dmnet_r101-d8_4xb2-80k_cityscapes-512x1024
In Collection: DMNet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.64
mIoU(ms+flip): 80.67
Config: configs/dmnet/dmnet_r101-d8_4xb2-80k_cityscapes-512x1024.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-101-D8
- DMNet
Training Resources: 4x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_80k_cityscapes/dmnet_r101-d8_512x1024_80k_cityscapes_20201215_031718-fa081cb8.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_80k_cityscapes/dmnet_r101-d8_512x1024_80k_cityscapes-20201215_031718.log.json
Paper:
Title: Dynamic Multi-scale Filters for Semantic Segmentation
URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93
Framework: PyTorch
- Name: dmnet_r50-d8_4xb2-80k_cityscapes-769x769
In Collection: DMNet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.22
mIoU(ms+flip): 80.55
Config: configs/dmnet/dmnet_r50-d8_4xb2-80k_cityscapes-769x769.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-50-D8
- DMNet
Training Resources: 4x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_80k_cityscapes/dmnet_r50-d8_769x769_80k_cityscapes_20201215_034006-6060840e.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_80k_cityscapes/dmnet_r50-d8_769x769_80k_cityscapes-20201215_034006.log.json
Paper:
Title: Dynamic Multi-scale Filters for Semantic Segmentation
URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93
Framework: PyTorch
- Name: dmnet_r101-d8_4xb2-80k_cityscapes-769x769
In Collection: DMNet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.19
mIoU(ms+flip): 80.65
Config: configs/dmnet/dmnet_r101-d8_4xb2-80k_cityscapes-769x769.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-101-D8
- DMNet
Training Resources: 4x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_80k_cityscapes/dmnet_r101-d8_769x769_80k_cityscapes_20201215_082810-7f0de59a.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_80k_cityscapes/dmnet_r101-d8_769x769_80k_cityscapes-20201215_082810.log.json
Paper:
Title: Dynamic Multi-scale Filters for Semantic Segmentation
URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93
Framework: PyTorch
- Name: dmnet_r50-d8_4xb4-80k_ade20k-512x512
In Collection: DMNet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 42.37
mIoU(ms+flip): 43.62
Config: configs/dmnet/dmnet_r50-d8_4xb4-80k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- R-50-D8
- DMNet
Training Resources: 4x V100 GPUS
Memory (GB): 9.4
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_80k_ade20k/dmnet_r50-d8_512x512_80k_ade20k_20201215_144744-f89092a6.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_80k_ade20k/dmnet_r50-d8_512x512_80k_ade20k-20201215_144744.log.json
Paper:
Title: Dynamic Multi-scale Filters for Semantic Segmentation
URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93
Framework: PyTorch
- Name: dmnet_r101-d8_4xb4-80k_ade20k-512x512
In Collection: DMNet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 45.34
mIoU(ms+flip): 46.13
Config: configs/dmnet/dmnet_r101-d8_4xb4-80k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- R-101-D8
- DMNet
Training Resources: 4x V100 GPUS
Memory (GB): 13.0
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_80k_ade20k/dmnet_r101-d8_512x512_80k_ade20k_20201215_104812-bfa45311.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_80k_ade20k/dmnet_r101-d8_512x512_80k_ade20k-20201215_104812.log.json
Paper:
Title: Dynamic Multi-scale Filters for Semantic Segmentation
URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93
Framework: PyTorch
- Name: dmnet_r50-d8_4xb4-160k_ade20k-512x512
In Collection: DMNet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 43.15
mIoU(ms+flip): 44.17
Config: configs/dmnet/dmnet_r50-d8_4xb4-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- R-50-D8
- DMNet
Training Resources: 4x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_160k_ade20k/dmnet_r50-d8_512x512_160k_ade20k_20201215_115313-025ab3f9.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_160k_ade20k/dmnet_r50-d8_512x512_160k_ade20k-20201215_115313.log.json
Paper:
Title: Dynamic Multi-scale Filters for Semantic Segmentation
URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93
Framework: PyTorch
- Name: dmnet_r101-d8_4xb4-160k_ade20k-512x512
In Collection: DMNet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 45.42
mIoU(ms+flip): 46.76
Config: configs/dmnet/dmnet_r101-d8_4xb4-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- R-101-D8
- DMNet
Training Resources: 4x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_160k_ade20k/dmnet_r101-d8_512x512_160k_ade20k_20201215_111145-a0bc02ef.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_160k_ade20k/dmnet_r101-d8_512x512_160k_ade20k-20201215_111145.log.json
Paper:
Title: Dynamic Multi-scale Filters for Semantic Segmentation
URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93
Framework: PyTorch