Spaces:
Runtime error
Runtime error
Collections: | |
- Name: DMNet | |
License: Apache License 2.0 | |
Metadata: | |
Training Data: | |
- Cityscapes | |
- ADE20K | |
Paper: | |
Title: Dynamic Multi-scale Filters for Semantic Segmentation | |
URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf | |
README: configs/dmnet/README.md | |
Frameworks: | |
- PyTorch | |
Models: | |
- Name: dmnet_r50-d8_4xb2-40k_cityscapes-512x1024 | |
In Collection: DMNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: Cityscapes | |
Metrics: | |
mIoU: 77.78 | |
mIoU(ms+flip): 79.14 | |
Config: configs/dmnet/dmnet_r50-d8_4xb2-40k_cityscapes-512x1024.py | |
Metadata: | |
Training Data: Cityscapes | |
Batch Size: 8 | |
Architecture: | |
- R-50-D8 | |
- DMNet | |
Training Resources: 4x V100 GPUS | |
Memory (GB): 7.0 | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_40k_cityscapes/dmnet_r50-d8_512x1024_40k_cityscapes_20201215_042326-615373cf.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_40k_cityscapes/dmnet_r50-d8_512x1024_40k_cityscapes-20201215_042326.log.json | |
Paper: | |
Title: Dynamic Multi-scale Filters for Semantic Segmentation | |
URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93 | |
Framework: PyTorch | |
- Name: dmnet_r101-d8_4xb2-40k_cityscapes-512x1024 | |
In Collection: DMNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: Cityscapes | |
Metrics: | |
mIoU: 78.37 | |
mIoU(ms+flip): 79.72 | |
Config: configs/dmnet/dmnet_r101-d8_4xb2-40k_cityscapes-512x1024.py | |
Metadata: | |
Training Data: Cityscapes | |
Batch Size: 8 | |
Architecture: | |
- R-101-D8 | |
- DMNet | |
Training Resources: 4x V100 GPUS | |
Memory (GB): 10.6 | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_40k_cityscapes/dmnet_r101-d8_512x1024_40k_cityscapes_20201215_043100-8291e976.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_40k_cityscapes/dmnet_r101-d8_512x1024_40k_cityscapes-20201215_043100.log.json | |
Paper: | |
Title: Dynamic Multi-scale Filters for Semantic Segmentation | |
URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93 | |
Framework: PyTorch | |
- Name: dmnet_r50-d8_4xb2-40k_cityscapes-769x769 | |
In Collection: DMNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: Cityscapes | |
Metrics: | |
mIoU: 78.49 | |
mIoU(ms+flip): 80.27 | |
Config: configs/dmnet/dmnet_r50-d8_4xb2-40k_cityscapes-769x769.py | |
Metadata: | |
Training Data: Cityscapes | |
Batch Size: 8 | |
Architecture: | |
- R-50-D8 | |
- DMNet | |
Training Resources: 4x V100 GPUS | |
Memory (GB): 7.9 | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_40k_cityscapes/dmnet_r50-d8_769x769_40k_cityscapes_20201215_093706-e7f0e23e.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_40k_cityscapes/dmnet_r50-d8_769x769_40k_cityscapes-20201215_093706.log.json | |
Paper: | |
Title: Dynamic Multi-scale Filters for Semantic Segmentation | |
URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93 | |
Framework: PyTorch | |
- Name: dmnet_r101-d8_4xb2-40k_cityscapes-769x769 | |
In Collection: DMNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: Cityscapes | |
Metrics: | |
mIoU: 77.62 | |
mIoU(ms+flip): 78.94 | |
Config: configs/dmnet/dmnet_r101-d8_4xb2-40k_cityscapes-769x769.py | |
Metadata: | |
Training Data: Cityscapes | |
Batch Size: 8 | |
Architecture: | |
- R-101-D8 | |
- DMNet | |
Training Resources: 4x V100 GPUS | |
Memory (GB): 12.0 | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_40k_cityscapes/dmnet_r101-d8_769x769_40k_cityscapes_20201215_081348-a74261f6.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_40k_cityscapes/dmnet_r101-d8_769x769_40k_cityscapes-20201215_081348.log.json | |
Paper: | |
Title: Dynamic Multi-scale Filters for Semantic Segmentation | |
URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93 | |
Framework: PyTorch | |
- Name: dmnet_r50-d8_4xb2-80k_cityscapes-512x1024 | |
In Collection: DMNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: Cityscapes | |
Metrics: | |
mIoU: 79.07 | |
mIoU(ms+flip): 80.22 | |
Config: configs/dmnet/dmnet_r50-d8_4xb2-80k_cityscapes-512x1024.py | |
Metadata: | |
Training Data: Cityscapes | |
Batch Size: 8 | |
Architecture: | |
- R-50-D8 | |
- DMNet | |
Training Resources: 4x V100 GPUS | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_80k_cityscapes/dmnet_r50-d8_512x1024_80k_cityscapes_20201215_053728-3c8893b9.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x1024_80k_cityscapes/dmnet_r50-d8_512x1024_80k_cityscapes-20201215_053728.log.json | |
Paper: | |
Title: Dynamic Multi-scale Filters for Semantic Segmentation | |
URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93 | |
Framework: PyTorch | |
- Name: dmnet_r101-d8_4xb2-80k_cityscapes-512x1024 | |
In Collection: DMNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: Cityscapes | |
Metrics: | |
mIoU: 79.64 | |
mIoU(ms+flip): 80.67 | |
Config: configs/dmnet/dmnet_r101-d8_4xb2-80k_cityscapes-512x1024.py | |
Metadata: | |
Training Data: Cityscapes | |
Batch Size: 8 | |
Architecture: | |
- R-101-D8 | |
- DMNet | |
Training Resources: 4x V100 GPUS | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_80k_cityscapes/dmnet_r101-d8_512x1024_80k_cityscapes_20201215_031718-fa081cb8.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x1024_80k_cityscapes/dmnet_r101-d8_512x1024_80k_cityscapes-20201215_031718.log.json | |
Paper: | |
Title: Dynamic Multi-scale Filters for Semantic Segmentation | |
URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93 | |
Framework: PyTorch | |
- Name: dmnet_r50-d8_4xb2-80k_cityscapes-769x769 | |
In Collection: DMNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: Cityscapes | |
Metrics: | |
mIoU: 79.22 | |
mIoU(ms+flip): 80.55 | |
Config: configs/dmnet/dmnet_r50-d8_4xb2-80k_cityscapes-769x769.py | |
Metadata: | |
Training Data: Cityscapes | |
Batch Size: 8 | |
Architecture: | |
- R-50-D8 | |
- DMNet | |
Training Resources: 4x V100 GPUS | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_80k_cityscapes/dmnet_r50-d8_769x769_80k_cityscapes_20201215_034006-6060840e.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_769x769_80k_cityscapes/dmnet_r50-d8_769x769_80k_cityscapes-20201215_034006.log.json | |
Paper: | |
Title: Dynamic Multi-scale Filters for Semantic Segmentation | |
URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93 | |
Framework: PyTorch | |
- Name: dmnet_r101-d8_4xb2-80k_cityscapes-769x769 | |
In Collection: DMNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: Cityscapes | |
Metrics: | |
mIoU: 79.19 | |
mIoU(ms+flip): 80.65 | |
Config: configs/dmnet/dmnet_r101-d8_4xb2-80k_cityscapes-769x769.py | |
Metadata: | |
Training Data: Cityscapes | |
Batch Size: 8 | |
Architecture: | |
- R-101-D8 | |
- DMNet | |
Training Resources: 4x V100 GPUS | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_80k_cityscapes/dmnet_r101-d8_769x769_80k_cityscapes_20201215_082810-7f0de59a.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_769x769_80k_cityscapes/dmnet_r101-d8_769x769_80k_cityscapes-20201215_082810.log.json | |
Paper: | |
Title: Dynamic Multi-scale Filters for Semantic Segmentation | |
URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93 | |
Framework: PyTorch | |
- Name: dmnet_r50-d8_4xb4-80k_ade20k-512x512 | |
In Collection: DMNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: ADE20K | |
Metrics: | |
mIoU: 42.37 | |
mIoU(ms+flip): 43.62 | |
Config: configs/dmnet/dmnet_r50-d8_4xb4-80k_ade20k-512x512.py | |
Metadata: | |
Training Data: ADE20K | |
Batch Size: 16 | |
Architecture: | |
- R-50-D8 | |
- DMNet | |
Training Resources: 4x V100 GPUS | |
Memory (GB): 9.4 | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_80k_ade20k/dmnet_r50-d8_512x512_80k_ade20k_20201215_144744-f89092a6.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_80k_ade20k/dmnet_r50-d8_512x512_80k_ade20k-20201215_144744.log.json | |
Paper: | |
Title: Dynamic Multi-scale Filters for Semantic Segmentation | |
URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93 | |
Framework: PyTorch | |
- Name: dmnet_r101-d8_4xb4-80k_ade20k-512x512 | |
In Collection: DMNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: ADE20K | |
Metrics: | |
mIoU: 45.34 | |
mIoU(ms+flip): 46.13 | |
Config: configs/dmnet/dmnet_r101-d8_4xb4-80k_ade20k-512x512.py | |
Metadata: | |
Training Data: ADE20K | |
Batch Size: 16 | |
Architecture: | |
- R-101-D8 | |
- DMNet | |
Training Resources: 4x V100 GPUS | |
Memory (GB): 13.0 | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_80k_ade20k/dmnet_r101-d8_512x512_80k_ade20k_20201215_104812-bfa45311.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_80k_ade20k/dmnet_r101-d8_512x512_80k_ade20k-20201215_104812.log.json | |
Paper: | |
Title: Dynamic Multi-scale Filters for Semantic Segmentation | |
URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93 | |
Framework: PyTorch | |
- Name: dmnet_r50-d8_4xb4-160k_ade20k-512x512 | |
In Collection: DMNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: ADE20K | |
Metrics: | |
mIoU: 43.15 | |
mIoU(ms+flip): 44.17 | |
Config: configs/dmnet/dmnet_r50-d8_4xb4-160k_ade20k-512x512.py | |
Metadata: | |
Training Data: ADE20K | |
Batch Size: 16 | |
Architecture: | |
- R-50-D8 | |
- DMNet | |
Training Resources: 4x V100 GPUS | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_160k_ade20k/dmnet_r50-d8_512x512_160k_ade20k_20201215_115313-025ab3f9.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r50-d8_512x512_160k_ade20k/dmnet_r50-d8_512x512_160k_ade20k-20201215_115313.log.json | |
Paper: | |
Title: Dynamic Multi-scale Filters for Semantic Segmentation | |
URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93 | |
Framework: PyTorch | |
- Name: dmnet_r101-d8_4xb4-160k_ade20k-512x512 | |
In Collection: DMNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: ADE20K | |
Metrics: | |
mIoU: 45.42 | |
mIoU(ms+flip): 46.76 | |
Config: configs/dmnet/dmnet_r101-d8_4xb4-160k_ade20k-512x512.py | |
Metadata: | |
Training Data: ADE20K | |
Batch Size: 16 | |
Architecture: | |
- R-101-D8 | |
- DMNet | |
Training Resources: 4x V100 GPUS | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_160k_ade20k/dmnet_r101-d8_512x512_160k_ade20k_20201215_111145-a0bc02ef.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/dmnet/dmnet_r101-d8_512x512_160k_ade20k/dmnet_r101-d8_512x512_160k_ade20k-20201215_111145.log.json | |
Paper: | |
Title: Dynamic Multi-scale Filters for Semantic Segmentation | |
URL: https://openaccess.thecvf.com/content_ICCV_2019/papers/He_Dynamic_Multi-Scale_Filters_for_Semantic_Segmentation_ICCV_2019_paper.pdf | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/dm_head.py#L93 | |
Framework: PyTorch | |