HubHop
update
412c852
raw
history blame
12.3 kB
Collections:
- Name: EncNet
License: Apache License 2.0
Metadata:
Training Data:
- Cityscapes
- ADE20K
Paper:
Title: Context Encoding for Semantic Segmentation
URL: https://arxiv.org/abs/1803.08904
README: configs/encnet/README.md
Frameworks:
- PyTorch
Models:
- Name: encnet_r50-d8_4xb2-40k_cityscapes-512x1024
In Collection: EncNet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 75.67
mIoU(ms+flip): 77.08
Config: configs/encnet/encnet_r50-d8_4xb2-40k_cityscapes-512x1024.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-50-D8
- EncNet
Training Resources: 4x V100 GPUS
Memory (GB): 8.6
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_40k_cityscapes/encnet_r50-d8_512x1024_40k_cityscapes_20200621_220958-68638a47.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_40k_cityscapes/encnet_r50-d8_512x1024_40k_cityscapes-20200621_220958.log.json
Paper:
Title: Context Encoding for Semantic Segmentation
URL: https://arxiv.org/abs/1803.08904
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63
Framework: PyTorch
- Name: encnet_r101-d8_4xb2-40k_cityscapes-512x1024
In Collection: EncNet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 75.81
mIoU(ms+flip): 77.21
Config: configs/encnet/encnet_r101-d8_4xb2-40k_cityscapes-512x1024.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-101-D8
- EncNet
Training Resources: 4x V100 GPUS
Memory (GB): 12.1
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_40k_cityscapes/encnet_r101-d8_512x1024_40k_cityscapes_20200621_220933-35e0a3e8.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_40k_cityscapes/encnet_r101-d8_512x1024_40k_cityscapes-20200621_220933.log.json
Paper:
Title: Context Encoding for Semantic Segmentation
URL: https://arxiv.org/abs/1803.08904
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63
Framework: PyTorch
- Name: encnet_r50-d8_4xb2-40k_cityscapes-769x769
In Collection: EncNet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 76.24
mIoU(ms+flip): 77.85
Config: configs/encnet/encnet_r50-d8_4xb2-40k_cityscapes-769x769.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-50-D8
- EncNet
Training Resources: 4x V100 GPUS
Memory (GB): 9.8
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_40k_cityscapes/encnet_r50-d8_769x769_40k_cityscapes_20200621_220958-3bcd2884.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_40k_cityscapes/encnet_r50-d8_769x769_40k_cityscapes-20200621_220958.log.json
Paper:
Title: Context Encoding for Semantic Segmentation
URL: https://arxiv.org/abs/1803.08904
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63
Framework: PyTorch
- Name: encnet_r101-d8_4xb2-40k_cityscapes-769x769
In Collection: EncNet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 74.25
mIoU(ms+flip): 76.25
Config: configs/encnet/encnet_r101-d8_4xb2-40k_cityscapes-769x769.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-101-D8
- EncNet
Training Resources: 4x V100 GPUS
Memory (GB): 13.7
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_40k_cityscapes/encnet_r101-d8_769x769_40k_cityscapes_20200621_220933-2fafed55.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_40k_cityscapes/encnet_r101-d8_769x769_40k_cityscapes-20200621_220933.log.json
Paper:
Title: Context Encoding for Semantic Segmentation
URL: https://arxiv.org/abs/1803.08904
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63
Framework: PyTorch
- Name: encnet_r50-d8_4xb2-80k_cityscapes-512x1024
In Collection: EncNet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.94
mIoU(ms+flip): 79.13
Config: configs/encnet/encnet_r50-d8_4xb2-80k_cityscapes-512x1024.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-50-D8
- EncNet
Training Resources: 4x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_80k_cityscapes/encnet_r50-d8_512x1024_80k_cityscapes_20200622_003554-fc5c5624.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x1024_80k_cityscapes/encnet_r50-d8_512x1024_80k_cityscapes-20200622_003554.log.json
Paper:
Title: Context Encoding for Semantic Segmentation
URL: https://arxiv.org/abs/1803.08904
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63
Framework: PyTorch
- Name: encnet_r101-d8_4xb2-80k_cityscapes-512x1024
In Collection: EncNet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.55
mIoU(ms+flip): 79.47
Config: configs/encnet/encnet_r101-d8_4xb2-80k_cityscapes-512x1024.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-101-D8
- EncNet
Training Resources: 4x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_80k_cityscapes/encnet_r101-d8_512x1024_80k_cityscapes_20200622_003555-1de64bec.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x1024_80k_cityscapes/encnet_r101-d8_512x1024_80k_cityscapes-20200622_003555.log.json
Paper:
Title: Context Encoding for Semantic Segmentation
URL: https://arxiv.org/abs/1803.08904
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63
Framework: PyTorch
- Name: encnet_r50-d8_4xb2-80k_cityscapes-769x769
In Collection: EncNet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 77.44
mIoU(ms+flip): 78.72
Config: configs/encnet/encnet_r50-d8_4xb2-80k_cityscapes-769x769.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-50-D8
- EncNet
Training Resources: 4x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_80k_cityscapes/encnet_r50-d8_769x769_80k_cityscapes_20200622_003554-55096dcb.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_769x769_80k_cityscapes/encnet_r50-d8_769x769_80k_cityscapes-20200622_003554.log.json
Paper:
Title: Context Encoding for Semantic Segmentation
URL: https://arxiv.org/abs/1803.08904
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63
Framework: PyTorch
- Name: encnet_r101-d8_4xb2-80k_cityscapes-769x769
In Collection: EncNet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 76.1
mIoU(ms+flip): 76.97
Config: configs/encnet/encnet_r101-d8_4xb2-80k_cityscapes-769x769.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-101-D8
- EncNet
Training Resources: 4x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_80k_cityscapes/encnet_r101-d8_769x769_80k_cityscapes_20200622_003555-470ef79d.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_769x769_80k_cityscapes/encnet_r101-d8_769x769_80k_cityscapes-20200622_003555.log.json
Paper:
Title: Context Encoding for Semantic Segmentation
URL: https://arxiv.org/abs/1803.08904
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63
Framework: PyTorch
- Name: encnet_r50-d8_4xb4-80k_ade20k-512x512
In Collection: EncNet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 39.53
mIoU(ms+flip): 41.17
Config: configs/encnet/encnet_r50-d8_4xb4-80k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- R-50-D8
- EncNet
Training Resources: 4x V100 GPUS
Memory (GB): 10.1
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_80k_ade20k/encnet_r50-d8_512x512_80k_ade20k_20200622_042412-44b46b04.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_80k_ade20k/encnet_r50-d8_512x512_80k_ade20k-20200622_042412.log.json
Paper:
Title: Context Encoding for Semantic Segmentation
URL: https://arxiv.org/abs/1803.08904
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63
Framework: PyTorch
- Name: encnet_r101-d8_4xb4-80k_ade20k-512x512
In Collection: EncNet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 42.11
mIoU(ms+flip): 43.61
Config: configs/encnet/encnet_r101-d8_4xb4-80k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- R-101-D8
- EncNet
Training Resources: 4x V100 GPUS
Memory (GB): 13.6
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_80k_ade20k/encnet_r101-d8_512x512_80k_ade20k_20200622_101128-dd35e237.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_80k_ade20k/encnet_r101-d8_512x512_80k_ade20k-20200622_101128.log.json
Paper:
Title: Context Encoding for Semantic Segmentation
URL: https://arxiv.org/abs/1803.08904
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63
Framework: PyTorch
- Name: encnet_r50-d8_4xb4-160k_ade20k-512x512
In Collection: EncNet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 40.1
mIoU(ms+flip): 41.71
Config: configs/encnet/encnet_r50-d8_4xb4-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- R-50-D8
- EncNet
Training Resources: 4x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_160k_ade20k/encnet_r50-d8_512x512_160k_ade20k_20200622_101059-b2db95e0.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r50-d8_512x512_160k_ade20k/encnet_r50-d8_512x512_160k_ade20k-20200622_101059.log.json
Paper:
Title: Context Encoding for Semantic Segmentation
URL: https://arxiv.org/abs/1803.08904
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63
Framework: PyTorch
- Name: encnet_r101-d8_4xb4-160k_ade20k-512x512
In Collection: EncNet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 42.61
mIoU(ms+flip): 44.01
Config: configs/encnet/encnet_r101-d8_4xb4-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- R-101-D8
- EncNet
Training Resources: 4x V100 GPUS
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_160k_ade20k/encnet_r101-d8_512x512_160k_ade20k_20200622_073348-7989641f.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/encnet/encnet_r101-d8_512x512_160k_ade20k/encnet_r101-d8_512x512_160k_ade20k-20200622_073348.log.json
Paper:
Title: Context Encoding for Semantic Segmentation
URL: https://arxiv.org/abs/1803.08904
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.17.0/mmseg/models/decode_heads/enc_head.py#L63
Framework: PyTorch