Spaces:
Runtime error
Runtime error
Collections: | |
- Name: ICNet | |
License: Apache License 2.0 | |
Metadata: | |
Training Data: | |
- Cityscapes | |
Paper: | |
Title: ICNet for Real-time Semantic Segmentation on High-resolution Images | |
URL: https://arxiv.org/abs/1704.08545 | |
README: configs/icnet/README.md | |
Frameworks: | |
- PyTorch | |
Models: | |
- Name: icnet_r18-d8_4xb2-80k_cityscapes-832x832 | |
In Collection: ICNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: Cityscapes | |
Metrics: | |
mIoU: 68.14 | |
mIoU(ms+flip): 70.16 | |
Config: configs/icnet/icnet_r18-d8_4xb2-80k_cityscapes-832x832.py | |
Metadata: | |
Training Data: Cityscapes | |
Batch Size: 8 | |
Architecture: | |
- R-18-D8 | |
- ICNet | |
Training Resources: 4x V100 GPUS | |
Memory (GB): 1.7 | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_832x832_80k_cityscapes/icnet_r18-d8_832x832_80k_cityscapes_20210925_225521-2e36638d.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_832x832_80k_cityscapes/icnet_r18-d8_832x832_80k_cityscapes_20210925_225521.log.json | |
Paper: | |
Title: ICNet for Real-time Semantic Segmentation on High-resolution Images | |
URL: https://arxiv.org/abs/1704.08545 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/ic_neck.py#L77 | |
Framework: PyTorch | |
- Name: icnet_r18-d8_4xb2-160k_cityscapes-832x832 | |
In Collection: ICNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: Cityscapes | |
Metrics: | |
mIoU: 71.64 | |
mIoU(ms+flip): 74.18 | |
Config: configs/icnet/icnet_r18-d8_4xb2-160k_cityscapes-832x832.py | |
Metadata: | |
Training Data: Cityscapes | |
Batch Size: 8 | |
Architecture: | |
- R-18-D8 | |
- ICNet | |
Training Resources: 4x V100 GPUS | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_832x832_160k_cityscapes/icnet_r18-d8_832x832_160k_cityscapes_20210925_230153-2c6eb6e0.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_832x832_160k_cityscapes/icnet_r18-d8_832x832_160k_cityscapes_20210925_230153.log.json | |
Paper: | |
Title: ICNet for Real-time Semantic Segmentation on High-resolution Images | |
URL: https://arxiv.org/abs/1704.08545 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/ic_neck.py#L77 | |
Framework: PyTorch | |
- Name: icnet_r18-d8-in1k-pre_4xb2-80k_cityscapes-832x832 | |
In Collection: ICNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: Cityscapes | |
Metrics: | |
mIoU: 72.51 | |
mIoU(ms+flip): 74.78 | |
Config: configs/icnet/icnet_r18-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py | |
Metadata: | |
Training Data: Cityscapes | |
Batch Size: 8 | |
Architecture: | |
- R-18-D8 | |
- ICNet | |
- (in1k-pre) | |
Training Resources: 4x V100 GPUS | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_in1k-pre_832x832_80k_cityscapes/icnet_r18-d8_in1k-pre_832x832_80k_cityscapes_20210925_230354-1cbe3022.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_in1k-pre_832x832_80k_cityscapes/icnet_r18-d8_in1k-pre_832x832_80k_cityscapes_20210925_230354.log.json | |
Paper: | |
Title: ICNet for Real-time Semantic Segmentation on High-resolution Images | |
URL: https://arxiv.org/abs/1704.08545 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/ic_neck.py#L77 | |
Framework: PyTorch | |
- Name: icnet_r18-d8-in1k-pre_4xb2-160k_cityscapes-832x832 | |
In Collection: ICNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: Cityscapes | |
Metrics: | |
mIoU: 74.43 | |
mIoU(ms+flip): 76.72 | |
Config: configs/icnet/icnet_r18-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py | |
Metadata: | |
Training Data: Cityscapes | |
Batch Size: 8 | |
Architecture: | |
- R-18-D8 | |
- ICNet | |
- (in1k-pre) | |
Training Resources: 4x V100 GPUS | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_in1k-pre_832x832_160k_cityscapes/icnet_r18-d8_in1k-pre_832x832_160k_cityscapes_20210926_052702-619c8ae1.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r18-d8_in1k-pre_832x832_160k_cityscapes/icnet_r18-d8_in1k-pre_832x832_160k_cityscapes_20210926_052702.log.json | |
Paper: | |
Title: ICNet for Real-time Semantic Segmentation on High-resolution Images | |
URL: https://arxiv.org/abs/1704.08545 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/ic_neck.py#L77 | |
Framework: PyTorch | |
- Name: icnet_r50-d8_4xb2-80k_cityscapes-832x832 | |
In Collection: ICNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: Cityscapes | |
Metrics: | |
mIoU: 68.91 | |
mIoU(ms+flip): 69.72 | |
Config: configs/icnet/icnet_r50-d8_4xb2-80k_cityscapes-832x832.py | |
Metadata: | |
Training Data: Cityscapes | |
Batch Size: 8 | |
Architecture: | |
- R-50-D8 | |
- ICNet | |
Training Resources: 4x V100 GPUS | |
Memory (GB): 2.53 | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_832x832_80k_cityscapes/icnet_r50-d8_832x832_80k_cityscapes_20210926_044625-c6407341.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_832x832_80k_cityscapes/icnet_r50-d8_832x832_80k_cityscapes_20210926_044625.log.json | |
Paper: | |
Title: ICNet for Real-time Semantic Segmentation on High-resolution Images | |
URL: https://arxiv.org/abs/1704.08545 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/ic_neck.py#L77 | |
Framework: PyTorch | |
- Name: icnet_r50-d8_4xb2-160k_cityscapes-832x832 | |
In Collection: ICNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: Cityscapes | |
Metrics: | |
mIoU: 73.82 | |
mIoU(ms+flip): 75.67 | |
Config: configs/icnet/icnet_r50-d8_4xb2-160k_cityscapes-832x832.py | |
Metadata: | |
Training Data: Cityscapes | |
Batch Size: 8 | |
Architecture: | |
- R-50-D8 | |
- ICNet | |
Training Resources: 4x V100 GPUS | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_832x832_160k_cityscapes/icnet_r50-d8_832x832_160k_cityscapes_20210925_232612-a95f0d4e.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_832x832_160k_cityscapes/icnet_r50-d8_832x832_160k_cityscapes_20210925_232612.log.json | |
Paper: | |
Title: ICNet for Real-time Semantic Segmentation on High-resolution Images | |
URL: https://arxiv.org/abs/1704.08545 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/ic_neck.py#L77 | |
Framework: PyTorch | |
- Name: icnet_r50-d8-in1k-pre_4xb2-80k_cityscapes-832x832 | |
In Collection: ICNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: Cityscapes | |
Metrics: | |
mIoU: 74.58 | |
mIoU(ms+flip): 76.41 | |
Config: configs/icnet/icnet_r50-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py | |
Metadata: | |
Training Data: Cityscapes | |
Batch Size: 8 | |
Architecture: | |
- R-50-D8 | |
- ICNet | |
- (in1k-pre) | |
Training Resources: 4x V100 GPUS | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_in1k-pre_832x832_80k_cityscapes/icnet_r50-d8_in1k-pre_832x832_80k_cityscapes_20210926_032943-1743dc7b.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_in1k-pre_832x832_80k_cityscapes/icnet_r50-d8_in1k-pre_832x832_80k_cityscapes_20210926_032943.log.json | |
Paper: | |
Title: ICNet for Real-time Semantic Segmentation on High-resolution Images | |
URL: https://arxiv.org/abs/1704.08545 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/ic_neck.py#L77 | |
Framework: PyTorch | |
- Name: icnet_r50-d8-in1k-pre_4xb2-160k_cityscapes-832x832 | |
In Collection: ICNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: Cityscapes | |
Metrics: | |
mIoU: 76.29 | |
mIoU(ms+flip): 78.09 | |
Config: configs/icnet/icnet_r50-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py | |
Metadata: | |
Training Data: Cityscapes | |
Batch Size: 8 | |
Architecture: | |
- R-50-D8 | |
- ICNet | |
- (in1k-pre) | |
Training Resources: 4x V100 GPUS | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_in1k-pre_832x832_160k_cityscapes/icnet_r50-d8_in1k-pre_832x832_160k_cityscapes_20210926_042715-ce310aea.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r50-d8_in1k-pre_832x832_160k_cityscapes/icnet_r50-d8_in1k-pre_832x832_160k_cityscapes_20210926_042715.log.json | |
Paper: | |
Title: ICNet for Real-time Semantic Segmentation on High-resolution Images | |
URL: https://arxiv.org/abs/1704.08545 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/ic_neck.py#L77 | |
Framework: PyTorch | |
- Name: icnet_r101-d8_4xb2-80k_cityscapes-832x832 | |
In Collection: ICNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: Cityscapes | |
Metrics: | |
mIoU: 70.28 | |
mIoU(ms+flip): 71.95 | |
Config: configs/icnet/icnet_r101-d8_4xb2-80k_cityscapes-832x832.py | |
Metadata: | |
Training Data: Cityscapes | |
Batch Size: 8 | |
Architecture: | |
- R-101-D8 | |
- ICNet | |
Training Resources: 4x V100 GPUS | |
Memory (GB): 3.08 | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_832x832_80k_cityscapes/icnet_r101-d8_832x832_80k_cityscapes_20210926_072447-b52f936e.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_832x832_80k_cityscapes/icnet_r101-d8_832x832_80k_cityscapes_20210926_072447.log.json | |
Paper: | |
Title: ICNet for Real-time Semantic Segmentation on High-resolution Images | |
URL: https://arxiv.org/abs/1704.08545 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/ic_neck.py#L77 | |
Framework: PyTorch | |
- Name: icnet_r101-d8_4xb2-160k_cityscapes-832x832 | |
In Collection: ICNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: Cityscapes | |
Metrics: | |
mIoU: 73.8 | |
mIoU(ms+flip): 76.1 | |
Config: configs/icnet/icnet_r101-d8_4xb2-160k_cityscapes-832x832.py | |
Metadata: | |
Training Data: Cityscapes | |
Batch Size: 8 | |
Architecture: | |
- R-101-D8 | |
- ICNet | |
Training Resources: 4x V100 GPUS | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_832x832_160k_cityscapes/icnet_r101-d8_832x832_160k_cityscapes_20210926_092350-3a1ebf1a.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_832x832_160k_cityscapes/icnet_r101-d8_832x832_160k_cityscapes_20210926_092350.log.json | |
Paper: | |
Title: ICNet for Real-time Semantic Segmentation on High-resolution Images | |
URL: https://arxiv.org/abs/1704.08545 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/ic_neck.py#L77 | |
Framework: PyTorch | |
- Name: icnet_r101-d8-in1k-pre_4xb2-80k_cityscapes-832x832 | |
In Collection: ICNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: Cityscapes | |
Metrics: | |
mIoU: 75.57 | |
mIoU(ms+flip): 77.86 | |
Config: configs/icnet/icnet_r101-d8-in1k-pre_4xb2-80k_cityscapes-832x832.py | |
Metadata: | |
Training Data: Cityscapes | |
Batch Size: 8 | |
Architecture: | |
- R-101-D8 | |
- ICNet | |
- (in1k-pre) | |
Training Resources: 4x V100 GPUS | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes_20210926_020414-7ceb12c5.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes/icnet_r101-d8_in1k-pre_832x832_80k_cityscapes_20210926_020414.log.json | |
Paper: | |
Title: ICNet for Real-time Semantic Segmentation on High-resolution Images | |
URL: https://arxiv.org/abs/1704.08545 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/ic_neck.py#L77 | |
Framework: PyTorch | |
- Name: icnet_r101-d8-in1k-pre_4xb2-160k_cityscapes-832x832 | |
In Collection: ICNet | |
Results: | |
Task: Semantic Segmentation | |
Dataset: Cityscapes | |
Metrics: | |
mIoU: 76.15 | |
mIoU(ms+flip): 77.98 | |
Config: configs/icnet/icnet_r101-d8-in1k-pre_4xb2-160k_cityscapes-832x832.py | |
Metadata: | |
Training Data: Cityscapes | |
Batch Size: 8 | |
Architecture: | |
- R-101-D8 | |
- ICNet | |
- (in1k-pre) | |
Training Resources: 4x V100 GPUS | |
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes_20210925_232612-9484ae8a.pth | |
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/icnet/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes/icnet_r101-d8_in1k-pre_832x832_160k_cityscapes_20210925_232612.log.json | |
Paper: | |
Title: ICNet for Real-time Semantic Segmentation on High-resolution Images | |
URL: https://arxiv.org/abs/1704.08545 | |
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/necks/ic_neck.py#L77 | |
Framework: PyTorch | |