HubHop
update
412c852
raw
history blame
16.8 kB
Collections:
- Name: ISANet
License: Apache License 2.0
Metadata:
Training Data:
- Cityscapes
- ADE20K
- Pascal VOC 2012 + Aug
Paper:
Title: Interlaced Sparse Self-Attention for Semantic Segmentation
URL: https://arxiv.org/abs/1907.12273
README: configs/isanet/README.md
Frameworks:
- PyTorch
Models:
- Name: isanet_r50-d8_4xb2-40k_cityscapes-512x1024
In Collection: ISANet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.49
mIoU(ms+flip): 79.44
Config: configs/isanet/isanet_r50-d8_4xb2-40k_cityscapes-512x1024.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-50-D8
- ISANet
Training Resources: 4x V100 GPUS
Memory (GB): 5.869
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x1024_40k_cityscapes/isanet_r50-d8_512x1024_40k_cityscapes_20210901_054739-981bd763.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x1024_40k_cityscapes/isanet_r50-d8_512x1024_40k_cityscapes_20210901_054739.log.json
Paper:
Title: Interlaced Sparse Self-Attention for Semantic Segmentation
URL: https://arxiv.org/abs/1907.12273
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58
Framework: PyTorch
- Name: isanet_r50-d8_4xb2-80k_cityscapes-512x1024
In Collection: ISANet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.68
mIoU(ms+flip): 80.25
Config: configs/isanet/isanet_r50-d8_4xb2-80k_cityscapes-512x1024.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-50-D8
- ISANet
Training Resources: 4x V100 GPUS
Memory (GB): 5.869
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x1024_80k_cityscapes/isanet_r50-d8_512x1024_80k_cityscapes_20210901_074202-89384497.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x1024_80k_cityscapes/isanet_r50-d8_512x1024_80k_cityscapes_20210901_074202.log.json
Paper:
Title: Interlaced Sparse Self-Attention for Semantic Segmentation
URL: https://arxiv.org/abs/1907.12273
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58
Framework: PyTorch
- Name: isanet_r50-d8_4xb2-40k_cityscapes-769x769
In Collection: ISANet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 78.7
mIoU(ms+flip): 80.28
Config: configs/isanet/isanet_r50-d8_4xb2-40k_cityscapes-769x769.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-50-D8
- ISANet
Training Resources: 4x V100 GPUS
Memory (GB): 6.759
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_769x769_40k_cityscapes/isanet_r50-d8_769x769_40k_cityscapes_20210903_050200-4ae7e65b.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_769x769_40k_cityscapes/isanet_r50-d8_769x769_40k_cityscapes_20210903_050200.log.json
Paper:
Title: Interlaced Sparse Self-Attention for Semantic Segmentation
URL: https://arxiv.org/abs/1907.12273
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58
Framework: PyTorch
- Name: isanet_r50-d8_4xb2-80k_cityscapes-769x769
In Collection: ISANet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.29
mIoU(ms+flip): 80.53
Config: configs/isanet/isanet_r50-d8_4xb2-80k_cityscapes-769x769.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-50-D8
- ISANet
Training Resources: 4x V100 GPUS
Memory (GB): 6.759
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_769x769_80k_cityscapes/isanet_r50-d8_769x769_80k_cityscapes_20210903_101126-99b54519.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_769x769_80k_cityscapes/isanet_r50-d8_769x769_80k_cityscapes_20210903_101126.log.json
Paper:
Title: Interlaced Sparse Self-Attention for Semantic Segmentation
URL: https://arxiv.org/abs/1907.12273
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58
Framework: PyTorch
- Name: isanet_r101-d8_4xb2-40k_cityscapes-512x1024
In Collection: ISANet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.58
mIoU(ms+flip): 81.05
Config: configs/isanet/isanet_r101-d8_4xb2-40k_cityscapes-512x1024.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-101-D8
- ISANet
Training Resources: 4x V100 GPUS
Memory (GB): 9.425
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x1024_40k_cityscapes/isanet_r101-d8_512x1024_40k_cityscapes_20210901_145553-293e6bd6.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x1024_40k_cityscapes/isanet_r101-d8_512x1024_40k_cityscapes_20210901_145553.log.json
Paper:
Title: Interlaced Sparse Self-Attention for Semantic Segmentation
URL: https://arxiv.org/abs/1907.12273
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58
Framework: PyTorch
- Name: isanet_r101-d8_4xb2-80k_cityscapes-512x1024
In Collection: ISANet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 80.32
mIoU(ms+flip): 81.58
Config: configs/isanet/isanet_r101-d8_4xb2-80k_cityscapes-512x1024.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-101-D8
- ISANet
Training Resources: 4x V100 GPUS
Memory (GB): 9.425
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x1024_80k_cityscapes/isanet_r101-d8_512x1024_80k_cityscapes_20210901_145243-5b99c9b2.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x1024_80k_cityscapes/isanet_r101-d8_512x1024_80k_cityscapes_20210901_145243.log.json
Paper:
Title: Interlaced Sparse Self-Attention for Semantic Segmentation
URL: https://arxiv.org/abs/1907.12273
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58
Framework: PyTorch
- Name: isanet_r101-d8_4xb2-40k_cityscapes-769x769
In Collection: ISANet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 79.68
mIoU(ms+flip): 80.95
Config: configs/isanet/isanet_r101-d8_4xb2-40k_cityscapes-769x769.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-101-D8
- ISANet
Training Resources: 4x V100 GPUS
Memory (GB): 10.815
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_769x769_40k_cityscapes/isanet_r101-d8_769x769_40k_cityscapes_20210903_111320-509e7224.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_769x769_40k_cityscapes/isanet_r101-d8_769x769_40k_cityscapes_20210903_111320.log.json
Paper:
Title: Interlaced Sparse Self-Attention for Semantic Segmentation
URL: https://arxiv.org/abs/1907.12273
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58
Framework: PyTorch
- Name: isanet_r101-d8_4xb2-80k_cityscapes-769x769
In Collection: ISANet
Results:
Task: Semantic Segmentation
Dataset: Cityscapes
Metrics:
mIoU: 80.61
mIoU(ms+flip): 81.59
Config: configs/isanet/isanet_r101-d8_4xb2-80k_cityscapes-769x769.py
Metadata:
Training Data: Cityscapes
Batch Size: 8
Architecture:
- R-101-D8
- ISANet
Training Resources: 4x V100 GPUS
Memory (GB): 10.815
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_769x769_80k_cityscapes/isanet_r101-d8_769x769_80k_cityscapes_20210903_111319-24f71dfa.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_769x769_80k_cityscapes/isanet_r101-d8_769x769_80k_cityscapes_20210903_111319.log.json
Paper:
Title: Interlaced Sparse Self-Attention for Semantic Segmentation
URL: https://arxiv.org/abs/1907.12273
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58
Framework: PyTorch
- Name: isanet_r50-d8_4xb4-80k_ade20k-512x512
In Collection: ISANet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 41.12
mIoU(ms+flip): 42.35
Config: configs/isanet/isanet_r50-d8_4xb4-80k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- R-50-D8
- ISANet
Training Resources: 4x V100 GPUS
Memory (GB): 9.0
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_80k_ade20k/isanet_r50-d8_512x512_80k_ade20k_20210903_124557-6ed83a0c.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_80k_ade20k/isanet_r50-d8_512x512_80k_ade20k_20210903_124557.log.json
Paper:
Title: Interlaced Sparse Self-Attention for Semantic Segmentation
URL: https://arxiv.org/abs/1907.12273
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58
Framework: PyTorch
- Name: isanet_r50-d8_4xb4-160k_ade20k-512x512
In Collection: ISANet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 42.59
mIoU(ms+flip): 43.07
Config: configs/isanet/isanet_r50-d8_4xb4-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- R-50-D8
- ISANet
Training Resources: 4x V100 GPUS
Memory (GB): 9.0
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_160k_ade20k/isanet_r50-d8_512x512_160k_ade20k_20210903_104850-f752d0a3.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_160k_ade20k/isanet_r50-d8_512x512_160k_ade20k_20210903_104850.log.json
Paper:
Title: Interlaced Sparse Self-Attention for Semantic Segmentation
URL: https://arxiv.org/abs/1907.12273
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58
Framework: PyTorch
- Name: isanet_r101-d8_4xb4-80k_ade20k-512x512
In Collection: ISANet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 43.51
mIoU(ms+flip): 44.38
Config: configs/isanet/isanet_r101-d8_4xb4-80k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- R-101-D8
- ISANet
Training Resources: 4x V100 GPUS
Memory (GB): 12.562
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_80k_ade20k/isanet_r101-d8_512x512_80k_ade20k_20210903_162056-68b235c2.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_80k_ade20k/isanet_r101-d8_512x512_80k_ade20k_20210903_162056.log.json
Paper:
Title: Interlaced Sparse Self-Attention for Semantic Segmentation
URL: https://arxiv.org/abs/1907.12273
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58
Framework: PyTorch
- Name: isanet_r101-d8_4xb4-160k_ade20k-512x512
In Collection: ISANet
Results:
Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 43.8
mIoU(ms+flip): 45.4
Config: configs/isanet/isanet_r101-d8_4xb4-160k_ade20k-512x512.py
Metadata:
Training Data: ADE20K
Batch Size: 16
Architecture:
- R-101-D8
- ISANet
Training Resources: 4x V100 GPUS
Memory (GB): 12.562
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_160k_ade20k/isanet_r101-d8_512x512_160k_ade20k_20210903_211431-a7879dcd.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_160k_ade20k/isanet_r101-d8_512x512_160k_ade20k_20210903_211431.log.json
Paper:
Title: Interlaced Sparse Self-Attention for Semantic Segmentation
URL: https://arxiv.org/abs/1907.12273
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58
Framework: PyTorch
- Name: isanet_r50-d8_4xb4-20k_voc12aug-512x512
In Collection: ISANet
Results:
Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 76.78
mIoU(ms+flip): 77.79
Config: configs/isanet/isanet_r50-d8_4xb4-20k_voc12aug-512x512.py
Metadata:
Training Data: Pascal VOC 2012 + Aug
Batch Size: 16
Architecture:
- R-50-D8
- ISANet
Training Resources: 4x V100 GPUS
Memory (GB): 5.9
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_20k_voc12aug/isanet_r50-d8_512x512_20k_voc12aug_20210901_164838-79d59b80.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_20k_voc12aug/isanet_r50-d8_512x512_20k_voc12aug_20210901_164838.log.json
Paper:
Title: Interlaced Sparse Self-Attention for Semantic Segmentation
URL: https://arxiv.org/abs/1907.12273
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58
Framework: PyTorch
- Name: isanet_r50-d8_4xb4-40k_voc12aug-512x512
In Collection: ISANet
Results:
Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 76.2
mIoU(ms+flip): 77.22
Config: configs/isanet/isanet_r50-d8_4xb4-40k_voc12aug-512x512.py
Metadata:
Training Data: Pascal VOC 2012 + Aug
Batch Size: 16
Architecture:
- R-50-D8
- ISANet
Training Resources: 4x V100 GPUS
Memory (GB): 5.9
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_40k_voc12aug/isanet_r50-d8_512x512_40k_voc12aug_20210901_151349-7d08a54e.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r50-d8_512x512_40k_voc12aug/isanet_r50-d8_512x512_40k_voc12aug_20210901_151349.log.json
Paper:
Title: Interlaced Sparse Self-Attention for Semantic Segmentation
URL: https://arxiv.org/abs/1907.12273
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58
Framework: PyTorch
- Name: isanet_r101-d8_4xb4-20k_voc12aug-512x512
In Collection: ISANet
Results:
Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 78.46
mIoU(ms+flip): 79.16
Config: configs/isanet/isanet_r101-d8_4xb4-20k_voc12aug-512x512.py
Metadata:
Training Data: Pascal VOC 2012 + Aug
Batch Size: 16
Architecture:
- R-101-D8
- ISANet
Training Resources: 4x V100 GPUS
Memory (GB): 9.465
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_20k_voc12aug/isanet_r101-d8_512x512_20k_voc12aug_20210901_115805-3ccbf355.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_20k_voc12aug/isanet_r101-d8_512x512_20k_voc12aug_20210901_115805.log.json
Paper:
Title: Interlaced Sparse Self-Attention for Semantic Segmentation
URL: https://arxiv.org/abs/1907.12273
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58
Framework: PyTorch
- Name: isanet_r101-d8_4xb4-40k_voc12aug-512x512
In Collection: ISANet
Results:
Task: Semantic Segmentation
Dataset: Pascal VOC 2012 + Aug
Metrics:
mIoU: 78.12
mIoU(ms+flip): 79.04
Config: configs/isanet/isanet_r101-d8_4xb4-40k_voc12aug-512x512.py
Metadata:
Training Data: Pascal VOC 2012 + Aug
Batch Size: 16
Architecture:
- R-101-D8
- ISANet
Training Resources: 4x V100 GPUS
Memory (GB): 9.465
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_40k_voc12aug/isanet_r101-d8_512x512_40k_voc12aug_20210901_145814-bc71233b.pth
Training log: https://download.openmmlab.com/mmsegmentation/v0.5/isanet/isanet_r101-d8_512x512_40k_voc12aug/isanet_r101-d8_512x512_40k_voc12aug_20210901_145814.log.json
Paper:
Title: Interlaced Sparse Self-Attention for Semantic Segmentation
URL: https://arxiv.org/abs/1907.12273
Code: https://github.com/open-mmlab/mmsegmentation/blob/v0.18.0/mmseg/models/decode_heads/isa_head.py#L58
Framework: PyTorch